ACS 232nd National Meeting San Francisco, CA Sept. 10, 2006 # EPR Characterization of V(IV) Complexes with and without an oxo group Sandra S. Eaton, Gareth R. Eaton, Alistair Fielding Department of Chemistry and Biochemistry, University of Denver Funding: EB002807 Collaborators Debbie Crans Bharat Baruah #### **Outline** - Introduction to EPR - EPR of V(IV) in fluid solution - Speciation in reactions - EPR of V(IV) in glassy solution - Interpretation of hyperfine coupling constants - Tumbling correlation times - Electron spin relaxation times - Impact of flexibility - Electron-nuclear double resonance to measure small couplings - V(III) requires high magnetic fields ### V(IV) V(IV) is d_{xy}^{-1} . One unpaired electron gives $S = \frac{1}{2}$ Most EPR studies have been performed on complexes of VO²⁺ The natural product amavadin and its analogs are air-stable V(IV) complexes without an oxo group. Amavadin bound to Ca2+ cation ### **EPR Basics** $h\nu=g\beta B$ EPR spectra usually are displayed as the 1st derivative of the absorption signal. The number of hyperfine lines is 2nl+1. ### V(IV) in H_2O at 295 K The hida complex is a model for the natural product amavadin. Note that it is V(IV) complex, but without an oxo group! Vanadium nuclear spin = 7/2 2nl + 1 lines = 8 Parameters from simulations $$g_{iso}$$ = 1.964 A_{iso} = 81.3 x 10⁻⁴ cm⁻¹ ### Comparison of g_{iso} and A_{iso} values in H₂O | Compound | g _{iso} | A _{iso} | |--|------------------|------------------| | 1 | 1.966 | 91 | | VO(acac) ₂ | | | | 2 | 1.963 | 95 | | VO(maltol) ₂ | | | | 3 | 1.963 | 85 | | VO(salen-SO ₃) ²⁻ | | | | 4 | 1.964 | 81 | | V(hida) ₂ ²⁻ | | | - g-values ~ 1.965 are typical for V(IV) - variations in A_{iso} are larger than for g_{iso} - A_{iso} and g_{iso} for $V(hida)_2^{2-}$ are similar to those for oxo complexes ## Differences in A_{iso} are large enough to monitor reactions of VO(acac)₂ in H₂O The proposed assignments of species A, B, and C are: Scheme 1. Species A, B, and C Amin et al., Inorg. Chem. 39, 406 (2000). ### Anisotropy in immobilized samples ### Rigid-lattice spectra at 118 K X-band spectrum in 1:1 water:glycerol, which forms a glass. Parameters from simulations: $$g_x$$ = 1.986, g_y = 1.984, g_z = 1.918 A_x = 42, A_y = 49, A_z = 153 x 10⁻⁴ cm⁻¹ ### Comparison of g and A values in glassy 1:1 water:glycerol | Sample | g _x ,
A _x | g _y , | g _z ,
A _z | |--|------------------------------------|------------------|------------------------------------| | VO(maltol) ₂ | 1.977 | 1.974 | 1.939 | | | 60 | 55 | 169 | | VO(acac) ₂ | 1.980 | 1.967 | 1.950 | | | 54 | 56 | 163 | | VO(salen-SO ₃) ²⁻ | 1.978 | 1.974 | 1.955 | | | 46 | 55 | 154 | | V(hida) ₂ ²⁻ | 1.986 | 1.984 | 1.918 | | | 42 | 49 | 153 | Units for A values are 10⁻⁴ cm⁻¹ To avoid aggregation and locally high concentrations it is important to use solvents that form a glass when cooled. ### Interpretation of A_{II} values For square pyramidal vanadyl complexes the additive contributions to A_{||} from various ligands have been tabulated. Contributions decrease in the order $$H_2O > Cl^- > py > OH^- > RO^- > RS^-$$ T. S. Smith et al., Coord. Chem. Rev. 228, 1 (2002). - For π -bonding ligands, such as imidazole, the contribution to $A_{||}$ increases as the angle between the ligand plane and vanadyl bond increases. T. S. Smith et al., Coord. Chem. Rev. 228, 1 (2002). - DFT calculations have improved substantially. Values of A_{iso} and A_{||} for vanadyl complexes can be calculated within about 10%. A. C. Saladino and S. C. Larsen, J. Phys. Chem. A 107, 1872 (2003) ### Impact of tumbling correlation time for V(hida)₂²-