

ACS 232nd National Meeting San Francisco, CA Sept. 10, 2006

EPR Characterization of V(IV) Complexes with and without an oxo group

Sandra S. Eaton, Gareth R. Eaton, Alistair Fielding

Department of Chemistry and Biochemistry, University of Denver

Funding: EB002807

Collaborators

Debbie Crans

Bharat Baruah

Outline

- Introduction to EPR
- EPR of V(IV) in fluid solution
 - Speciation in reactions
- EPR of V(IV) in glassy solution
 - Interpretation of hyperfine coupling constants
- Tumbling correlation times
- Electron spin relaxation times
 - Impact of flexibility
- Electron-nuclear double resonance to measure small couplings
- V(III) requires high magnetic fields

V(IV)

V(IV) is d_{xy}^{-1} .

One unpaired electron gives $S = \frac{1}{2}$

Most EPR studies have been performed on complexes of VO²⁺

The natural product amavadin and its analogs are air-stable V(IV) complexes without an oxo group.

Amavadin bound to Ca2+ cation

EPR Basics

 $h\nu=g\beta B$

EPR spectra usually are displayed as the 1st derivative of the absorption signal.

The number of hyperfine lines is 2nl+1.

V(IV) in H_2O at 295 K

The hida complex is a model for the natural product amavadin. Note that it is V(IV) complex, but without an oxo group!

Vanadium nuclear spin = 7/2 2nl + 1 lines = 8

Parameters from simulations

$$g_{iso}$$
 = 1.964
 A_{iso} = 81.3 x 10⁻⁴ cm⁻¹

Comparison of g_{iso} and A_{iso} values in H₂O

Compound	g _{iso}	A _{iso}
1	1.966	91
VO(acac) ₂		
2	1.963	95
VO(maltol) ₂		
3	1.963	85
VO(salen-SO ₃) ²⁻		
4	1.964	81
V(hida) ₂ ²⁻		

- g-values ~ 1.965 are typical for V(IV)
- variations in A_{iso} are larger than for g_{iso}
- A_{iso} and g_{iso} for $V(hida)_2^{2-}$ are similar to those for oxo complexes

Differences in A_{iso} are large enough to monitor reactions of VO(acac)₂ in H₂O

The proposed assignments of species A, B, and C are:

Scheme 1. Species A, B, and C

Amin et al., Inorg. Chem. 39, 406 (2000).

Anisotropy in immobilized samples

Rigid-lattice spectra at 118 K

X-band spectrum in 1:1 water:glycerol, which forms a glass.

Parameters from simulations:

$$g_x$$
= 1.986, g_y = 1.984, g_z = 1.918
 A_x = 42, A_y = 49, A_z = 153 x 10⁻⁴ cm⁻¹

Comparison of g and A values in glassy 1:1 water:glycerol

Sample	g _x , A _x	g _y ,	g _z , A _z
VO(maltol) ₂	1.977	1.974	1.939
	60	55	169
VO(acac) ₂	1.980	1.967	1.950
	54	56	163
VO(salen-SO ₃) ²⁻	1.978	1.974	1.955
	46	55	154
V(hida) ₂ ²⁻	1.986	1.984	1.918
	42	49	153

Units for A values are 10⁻⁴ cm⁻¹

To avoid aggregation and locally high concentrations it is important to use solvents that form a glass when cooled.

Interpretation of A_{II} values

 For square pyramidal vanadyl complexes the additive contributions to A_{||} from various ligands have been tabulated. Contributions decrease in the order

$$H_2O > Cl^- > py > OH^- > RO^- > RS^-$$

T. S. Smith et al., Coord. Chem. Rev. 228, 1 (2002).

- For π -bonding ligands, such as imidazole, the contribution to $A_{||}$ increases as the angle between the ligand plane and vanadyl bond increases. T. S. Smith et al., Coord. Chem. Rev. 228, 1 (2002).
- DFT calculations have improved substantially. Values of A_{iso} and A_{||} for vanadyl complexes can be calculated within about 10%. A. C. Saladino and S. C. Larsen, J. Phys. Chem. A 107, 1872 (2003)

Impact of tumbling correlation time for V(hida)₂²-

