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Calculating a weighted regression using matrix algebra

Below we are solving a very simple linear regression to illustrate how to compute a weighted regression using
matrix algebra.

In this case, we know the weights already. However, in some more common instances, you may have to
estimate the weights by perhaps using the standard deviations of the IV's in the model

Xj = Vi = Wi =
1 X0
1 0.558
0.5578196 18.63654 1
1 x 1 2.022
2.0217271 | (103.49646 0.90334913 :
2.5773252 | (150.35391 0.75988974 1 x 1 2577
3.4140288 | [190.51031 0.42621714 X_MATRIX := |1 X3 X MATRIX = |1 3.414
4.3014084 | [208.70115 0.08686171 1 x4 1 4301
4.7448394 | [213.71135 0.01072308
1 x 1 4745
5.1073781 | |228.49353 0 5
1 5.107
1 X6

The matrix containing the weights will be a diagonal matrix, where the elements of the main diagonal have the
weights to be used in the estimation

Wy 0 0 0 0 0 O
1 0 0 o0 0 0 o
0w, 0 0 0 0 O
0 0903 0 O 0 0 o
0 0 w, 0 0 0 0
0O 0 076 O 0 0 o
WEGHT=|0 0 0 ws 0 0 O
G s WEIGHT=|0 0 0 0426 0 0 0
0 0 0 0 wg 0 O ) 0 0O 0087 0 O
0 0 0 0 0 wg O ) 0 o0 0 0011 0
0 0 0 0 0 0 wg 0 0 0 o0 0 0 o

The equations used to estimate the coefficients are very similar to those used in solving the Ordinary Least
Squares (OLS):

T -1 1.339 -0.525
XTX 1:= (X_MATRIX -WEIGHT-X_MATRIX) XTX 1=
-0.525 0.269
T 328.001
XTy := (X_MATRIX ~WEIGHT~y) XTy =
859.945

Notice that the only difference with the equations we use to solve the OLS is the fact that we add the weight
matrix (WEIGHT) to both XXt and X'y

~12.337
B := XTX_1-XTy B=
59.033
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Using weighted regression in Local Linear regression (LOESS/LOWESS)

When estimating a Local linear regression (or LOcally WEighted regreSSion, thus the name), the weights in
the WEIGHT matrix represent the closeness to the value being estimated. At every pointin the estimation, a
low-level polynomial regression (usually degree 1 or 2) is fitted to a subset of the data that is close to the
point being estimated. Usually, the weight of 1 is assigned to the observation being fitted. And for the
purposes of fitting the new lines, it is also imporntant to find what is the predicted value (the y-hat) for the
value being fitted.

b0 = BO

y_hat:= b0+ bl-x

b0 = -12.337

0.558
2.022
2.577
X =3.414
4.301

4.745

5.107

bl = Bl

bl = 59.033

18.637 1
103.496 0.903
150.354 0.76
190.51 w =[0.426
208.701 0.087
213.711 0.011
228.494 0

y_hat =

20.593
107.012
139.811
189.204
241.589
267.766

289.167

Thus, for the original data, when x = 0.558, and y = 18.637, the predicted value is now: 20.593. Below, we
illustrate how to compute the value for x = 2.022:
In order to compute the new value, we change the weight to reflect the new values:

Wi =

0.712642

1

0.982589

0.748942

0.212501

0.030572

0

WEIGHT :=

dif :

0.5578196 — 2.021727

3.085651

dif = -0.474

Wi = [1 (|l )3]3 wi=0.713

dif .=

0.5578196 — 2.021727

5

wi:= [1 —(|aif] )3]3

wi =

Notice that the scaling procedure we use here

matches what is called in the Excel
spreadsheet "based on normalization". You
must estimate the maximum difference and
then you use that in the denominator.

The proposal suggested in Guo & Fraser is to

use a percent of the cases (what they call XN.

in the Excel spreadsheet | illustrated estimates
using X= 0.25), and the equation to the left
illustrates how to calculate that value

dif = -0.293
0.927

0.713 0

0 1

0 0

WEIGHT=| O 0

0 0

0 0

0 0

o O o o o o o
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-1
T
XTX_1:= (X_MATRIX -WEIGHT-X_MATRIX)

.
XTy = (X_MATRIX ~WEIGHT~y)

B := XTX_1-XTy

b0 := By b0 = -7.176

y_hat:= b0+ bl-x

This time, when x =2.022, and y = 103.496, the predicted value is: 107.16

B

0.558
2.022
2.577
3.414
4.301
4.745
5.107

{—7.176

56.554

bl = Bl

bl = 56.554

18.637
103.496
150.354

190.51
208.701
213.711
228.494

1.533

458.078

3
1.306 x 10

0.713

0.983
0.749
0.213
0.031

-0.543
XTX 1=
~0.543 0.234

|

y_hat =
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24.371
107.16
138.582
185.9
236.085
261.163

281.666
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Estimating weighted linear regression using R

> w <- c(1, 0.903349126, 0.75988972, 0.426217146, 0.086861708, 0.010723079, 0)

>y <- c(18.63654, 103.49646, 150.35391, 190.51031, 208.70115, 213.71135, 228.49353)
> x <- ¢(0.5578196, 2.0217271, 2.5773252, 3.4140288, 4.3014084, 4.7448394, 5.1073781)
> regl <- Im(y~x, weight=w)

> summary(regl)

Call:
Im(formula = y ~ x, weights = w)

Weighted Residuals:
1 2 3 4 5 6 7
-1.9565 -3.3413 9.1907 0.8529 -9.6927 -5.5975 0.0000

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) -12.337 8.686 -1.42 0.22856
X 59.033 3.893 15.16 0.00011 ***

Signif. codes: 0 “**** 0.001 “*** 0.01 “** 0.05 “.” 0.1 * ~ 1

Residual standard error: 7.508 on 4 degrees of freedom
Multiple R-squared: 0.9829, Adjusted R-squared: 0.9786
F-statistic: 230 on 1 and 4 DF, p-value: 0.0001103

> predl <- fitted.values(regl)
> predl

1 2 3 4 5 6 7
20.59302 107.01200 139.81067 189.20386 241.58862 267.76572 289.16749

## calculating another value (notice that the weights are computed in excel

> w <- c(0.712642, 1, 0.982589, 0.748942, 0.212501, 0.030572, 0)

>y <- c(18.63654, 103.49646, 150.35391, 190.51031, 208.70115, 213.71135,
228.49353)

> X <- ¢(0.5578196, 2.0217271, 2.5773252, 3.4140288, 4.3014084, 4.7448394,
5.1073781)

> regl <- Im(y~x, weight=w)

> summary(regl)

Call:
Im(formula = y ~ x, weights = w)

Weighted Residuals:
1 2 3 4 5 6 7
-4.841 -3.664 11.669 3.990 -12.623 -8.297 0.000

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) -7.176 12.646 -0.567 0.600728
X 56.554 4.938 11.454 0.000332 ***

Signif. codes: 0 “**** 0.001 “*** 0.01 “** 0.05 “.” 0.1 * ~ 1

Residual standard error: 10.21 on 4 degrees of freedom
Multiple R-squared: 0.9704, Adjusted R-squared: 0.963
F-statistic: 131.2 on 1 and 4 DF, p-value: 0.0003316

> predl <- fitted.values(regl)
> predl

1 2 3 4 5 6 7
24.37072 107.16031 138.58151 185.90031 236.08503 261.16275 281.66571
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