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Multiple Regression 

Problem: we want to determine the effect of Desire for control, Family support, Number of 

friends, and Score on the BDI test on Perceived Support of Latino women. 

 

 Dependent variable: Perceived support. 

 Independent Variable 1: Desire for control. Measured through a questionnaire. 

 Independent Variable 2: Family support. Measured through a questionnaire. 

 Independent Variable 3: Number of friends.  

 Independent Variable 4: Score on the BDI.  

Questions that we may have about the variables  

 Is the relationship between Perceived support (DV) and Desire for control (IV1) the same 

when we use a simple model than when we also include: Family support (IV2)? How about 

when we include Number of friends (IV3)? etc. 
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 It depends on how correlated the variables are. For most conditions, it is not. 

 We need to translate our causal relationship into a mathematical model. 

 Develop an equation:  
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Where Yis an (n  1) vector with the measures for the dependent variable; B is an 

(5  1) vector that contains the coefficients, X is an (n  5) matrix that contains the 

measures of the independent variables (the extra column is a vector of "ones" so we can 

calculate the intercept), and finally, E is a (n  1) vector that contains the error terms: 

 We have to find the parameters of the model (i.e., solve the unknowns in the model, or more 

formally, compute the solution). 

 we can “solve for b” in our equation: 
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 What is the real meaning of the values we get from solving for B?  

 The model is taking into account the level of redundancy among variables as it calculates 

the best estimates. Therefore, some books call them “partial regression coefficients”: the 

slopes are calculated to include the influence of other variables in the model. For example, 

for our model with four IVs, the first three coefficients can be interpreted as:  
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 b0 estimates the mean of Y when X1, X2, X3 and, X4 are zero. This only makes sense 

when the ranges of both X1 to X4 can include 0.  

 b1 estimates the expected change in Y when we hold X2, X3 and X4, constant.  

 Similarly, b2 explains the expected change in Y when we hold X1, X3, and X4, 

constant. 

 How good is the fit of the model: 

 Estimation of the residuals (difference between observed and predicted scores) and the 

Residual Sum of Squares (RSS): 
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 Estimation of R2 (percentage of variance explained): 
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 Adjusted R2 value: takes the extra regressors into account:  
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Where k = number of  “b’s “ in the model. Adjusted R2 gives an estimate of the 

real change in amount of variance explained due to adding a new regressor to the model. 

We can also say that adjusted R2 evaluates if the improvement in the model is small 

relative to the increase in complexity. 

 Multiple correlation coefficient (measures the association between the DV and an 

optimal combination of the IV’s): 

mult corr r
Y Y
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 Test of significance: Omnibus test (checks if at least one of the slopes is significant): 
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 with (k-1, n-k) degrees of freedom. 

 The standard error of the coefficients is one of the by-products of the matrix approach: 

    12 '_  iiresidi XXsdevBse  

Where  X X
i i

'
,

1
 represents the corresponding element of the main diagonal of the inverse 

matrix of crossproducts, and (sdev(resid))
2 is the standard deviation of the residuals raised to 

the square (same as the Mean of Squares of Error).  

 The t-test: 

t b
b

se Bi
i
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_
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 with (n-k) degrees of freedom. 

 Confidence Intervals for all the b’s: 

CI_bi(1-) = bi ± (ttables) (se_Bi) 

 Confidence Intervals mean of a predicted value (answers the question: What is the 

Confidence Interval for the mean (Y) when (X1, X2, X3, X4) are…): 

 The tricky part is figuring out the standard error, because we have several IV’s. Ask me 

(or check: Montgomery, D. C., & Peck, E. A. (1982). Introduction to linear regression 

analysis. NY: John Wiley., pages 127-128). 

CI_ Y i(1-) = Y i ± (ttables) (se_ Y i) 

 What if the Independent Variables are correlated? 

 MULTICOLLINEARITY: any or all of the IVs are linearly related with any or all of the 

others. Sources of Multicollinearity: 
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 Data collection method: when we sample only a limited region of the population. 

By doing so, we may end up with strongly-correlated variables. 

 Constraints on the model: In this case, it does not matter how we sample, we will 

always get that constraint 

 Choice of the model: models that use polynomial terms (like age2), in addition to the 

linear term (i.e., age). 

 Over defined model: a model with more IV than cases. Very common in psychology 

and health sciences (e.g., clinical cases). 

 What if we have multicollinearity? 

 If we have multicollinearity, we may have a misleading interpretation of the regression 

coefficients (coefficients cannot be trusted).  

 The principal problem with this estimates is the extrapolation to other 

samples/other values beyond those used to estimate the coefficients. The 

coefficients are unreliable because they will change from sample to sample.  

 If we have multicollinearity, the standard error of the coefficients will be huge. 

Thus, slight different samples will give very different estimates of the same 

coefficient.  

 Theoretically (i.e., after an infinite number of samples are taken), the value of the 

coefficients will converge to the mean. However, in any given sample, the value 

may be way off… Even, of opposite sign!  

 Because of the huge standard error, and inaccurate estimation of the coefficients, we 

loose power (i.e., it is harder to reject the null hypothesis that the bi’s are different 

from zero). 

 How can we spot Multicollinearity? 

 Check the correlation matrix. If we find large correlations among independent variables, 

then we know that we have the problem. 



© Antonio Olmos, 2012 

 ROADMAP3.DOC12/17/2014 6

 Check the determinant of the (X'X) matrix. 

 The values of the main diagonals of the Inverse of the Correlation matrix among IV’s 

(CTC)-1 matrix are equal to:  
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Where R bi( )
2  is the coefficient of determination we get when Xi was regressed on 

the remaining p-1 regressors. The elements of the main diagonal are the so-called 

Variance Inflation Factor (VIF) (reported by SPSS). The value: 

1 2 R bi( )  

Is called tolerance. We can see that we want this value to be close to 1, because 

that means that R bi( )
2  is almost zero. This value is also reported in SPSS. 

 Check the value of the standard error of the coefficients (compare it to se(bi) when it is 

the only independent variable in the model). 

 Compare the significance values of both the F and the t's. Multicollinearity sometimes 

makes the F-test to be significant, while the t's are not (because the standard errors of the 

coefficients are huge).  

 The signs and magnitudes of the regression coefficients can also sometimes provide 

an indication of multicollinearity. If adding or removing an IV produces wild changes in 

the estimates, then there is multicollinearity.  

 In addition, if deletion of one or more data points produces wild variations in the 

coefficients, that may be an indication of multicollinearity. 

 If the values of the standardized regression coefficients are larger than either +1 or -1, it 

means that we have problems of multicollinearity. 

 If the signs of the coefficients are contrary to what you know/expect, then be alert 

about the possibility of multicollinearity. 
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 If the condition index for one of the eigenvalues is too high, then we may have a problem 

with multicollinearity. 

 If a high proportion of the variance of two or more coefficients is associated with the same 

eigenvalue, then that is a clear index of multicollinearity. 

 What to do if we have multicollinearity? 

 Get rid of some of the variables that are creating the problems. 

 Try to combine their scores into one single value 

 Keep the model, under the understanding that generalizations beyond the sample are 

risky. 

 Do not try to interpret the b’s. 

 OK as long as multicollinearity is an integral part of the model (the population 

always shows the same level of relation among independent variables).  

 CI for prediction are not affected. However, do not try to predict outside the 

ranges of your variables in the model. Prediction is better if close to the means of 

the variables.  

 If polynomial models, try centering them, or use orthogonal polynomials.   

 Use hierarchical models. 

 Try to find-out what is the latent construct behind the correlated variables (do factor 

analysis).  

 Try the technique called Ridge Regression, which is more robust to multicollinearity. 

 Add more cases. This of course in case you suspect that the multicollinearity problem is 

due to sampling bias (check causes for multicollinearity). 


