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Goals of this Workshop

This Workshop, prior to the 29" International EPR Symposium, provides an introduction
to computations of g values and hyperfine couplings and simulation of EPR spectra.
Computations are making increasingly important contributions to guiding and
interpreting EPR experimentation. Such computations are not yet part of the fabric of
routine EPR. We hope the Workshop will stimulate new work in this field.

The series of Workshops

1987 Workshop on the Future of EPR

1992 Workshop on the Future of EPR

1999 First Pulsed EPR Workshop

2000 Workshop on Pulsed EPR

2001 Multifrequency EPR Workshop

2002 Workshop on EPR of Aqueous Samples

2003 Workshop on Measuring Electron-Electron Distances by EPR
2004 Workshop on EPR Imaging

2005 Workshop on Selecting an EPR Resonator

2006 Workshop on Computation of EPR Parameters and Spectra

Publications related to the 1987 and 1992 Workshops on the future of EPR:

1. The Future of EPR Instrumentation, G. R. Eaton and S. S. Eaton, Spectroscopy 3,
34-36 (1988).

2. Workshop on the Future of EPR (ESR) Instrumentation - Denver, Colorado,
August 7, 1987, G. R. Eaton and S. S. Eaton, Bull. Magn. Reson. 10, 3-21 (1988).

3. EPR Imaging: Progress and Prospects, G. R. Eaton and S. S. Eaton, Bull. Magn.
Reson. 10, 22-31 (1988).

4.The Future of Electron Paramagnetic Resonance Spectroscopy, S. S. Eaton and G.
R. Eaton, Spectroscopy, 8 20-27 (1993).

5.The Future of Electron Paramagnetic Resonance Spectroscopy, S. S. Eaton and G.
R. Eaton, Bull. Magn. Reson. 16, 149-192 (1995).

The materials distributed at several past Workshops (pulsed, multifrequency, aqueous
samples, imaging, and distances) are available on line:
http://www.bruker-biospin.com/brukerepr/symposium.htm

The subject of this Workshop is part of an enormous intellectual landscape. This
Workshop has to focus on a small portion, yet strive to give an entree to this aspect of
EPR. To keep within practical bounds for a Workshop, we minimize emphasis on topics
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such as simulation of DEER (see 2003 Workshop on Measuring Electron-Electron
Distances by EPR), ESEEM (see 1999 and 2000 Pulsed EPR Workshops) or ENDOR.

There is separately a large literature of computer analysis of overlapping spectra,
especially applied to kinetics of multiple species studied by EPR. See, for example,
Keszler and Hogg (2005) and Chang et al. (2005). This topic is beyond the scope of this
Workshop.

To forecast where we want to take these topics today, consider the spin density
calculation shown in Figure 1. Ideally, the quantum mechanical calculation leads to a set
of hyperfine constants and g value that fit the observed EPR spectrum.

Figure 1. Computed spin density in a copper-copper dimer with a long bridge (picture
from Ruiz et al., 2003).

The computations needed for g-values and hyperfine couplings are not fully developed
yet, so there is need to continually refine the calculations by testing them against
experimental results, in the way sketched in Figure 2.

Spin density = gand A
Hy = Ey Spin Hamiltonian

R gand A = spectrum 7
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Figure 2. Schematic of the use of quantum mechanical calculations of g values and
hyperfine couplings to simulate spectra, and the use of best fit spectral parameters to feed
back to refinement of the computational methods (pictures from Abbott et al. 2005).



Section 1. Examples of Simulations of EPR Spectra

Introduction

It is inherent in the nature of EPR spectra that except for a few cases in which all lines are
fully resolved, simulation of the CW EPR spectra has been an important part of spectral
interpretation since early in the history of EPR. What is relatively new is the ready
availability of instrumentation at multiple RF/microwave frequencies to perform many of
the more than one hundred types of CW, pulsed, and multiple resonance EPR
measurements (Eaton and Eaton 1997). This puts demands on computer simulation much
greater than just having a program that computes to second order and incorporates g- and
a-anisotropy. For a long time, high-resolution EPR spectra of simple organic radicals
such as semiquinones have been used qualitatively as demonstrations of the correlation of
hyperfine splittings with electron spin density distributions estimated by HMO theory
(see, for example, Beck and Nibler, 1989). In the past few years quantum-mechanical
calculations have improved to the point that not only can g-values and hyperfine
splittings be calculated in reasonable agreement with experiment, but the ability to
perform some such calculations is incorporated into commercially available computer
programs. Thus, experiments that can now be performed on commercial spectrometers,
plus a few high-field instruments, provide previously unavailable information about spin
systems, and simulations of both CW and pulsed EPR experiments can now be performed
with a high degree of confidence (and speed). Understanding of g-values and hyperfine
constants is emerging at a computational level comparable to that used for calculating
structure and reactivity of molecules. This convergence provides EPR with
unprecedented conceptual power. The purpose of this Workshop on Computational EPR
is to stimulate wider use of these new tools.

From a computational point of view, the key issue is which parameters can be considered
isotropically averaged and which anisotropies have to be considered explicitly. Also of
central importance is dynamics, including spin dynamics, molecular tumbling, and
intramolecular motions. High-spin systems and even-spin systems, and multi-resonance
experiments, present additional challenges, both experimentally and computationally.
Even with the recent advances, there is as yet no ability to compute electron spin
relaxation times from first principles. Further, very few computer programs use actual
electron spin relaxation times in spectral simulations. Incorporation of realistic solvent
interaction with radicals when computing g and a values is at a nascent stage, with many
opportunities for new insights. Although there remain many hurdles, computation has
already opened new vistas in EPR spectroscopy.

A reasonably complete assignment and interpretation of an EPR spectrum should be
based on a simulation of that spectrum. Comparison of the simulation with experiment
tests whether the terms used in the simulation include those most important to the
physical phenomena that determine the shape of the spectrum. The computer power
available on the desktop today provides both an opportunity and an obligation to perform
simulations at least to the level of sophistication permitted by simulation programs
commercially available or readily available from other labs. The following examples of



EPR spectra are selected to illustrate the range of complexity of spin Hamiltonians
involved, and illustrate some of the successful simulations. One should always be aware
that a simulation may not be unambiguous. It may require simultaneous simulation of
experimental EPR spectra at multiple RF/microwave frequencies (and associated
magnetic fields) to find the actual parameters. As a simple, but defining, example,
consider that that 6-line spectrum observed for Mn®" in fluid solution and in many
crystalline solids can be simulated with no knowledge of or restriction on the zero-field
splitting parameters D and E. Only in special cases can the five sets of zero-field split
lines be observed at X-band. However, high-field/high frequency EPR (subsequently in
these notes, simply HF EPR) can provide direct measurements of D and E. Even then,
the sign of D may not be available unless measurements are done at two properly selected
low temperatures.

From very early in the development of EPR, various research groups wrote computer
programs for the simulation of the spectra of organic radicals and metal complexes.
Although initially many of these programs calculated line positions to only first order, the
ready availability of significant computer power even in a notebook computer makes it
routine to incorporate second order Breit-Rabi shifts and details of line shapes. The
SimFonia-WinEPR package written by Ralph Weber and available from Bruker BioSpin
makes this level of simulation available to a wide range of users. Incorporating effects of
intermediate and slow motion on line shapes still requires specialized programs, such as
those by Freed and Budil (see, for example, Schneider and Freed, 1989). Until recently,
most simulations of time-domain spectra were for analysis of, e.g., ESEEM and DEER.
However, first-principles simulation of the effects of microwave pulses on spins has
become available in programs such as EasySpin (Stoll 2003). The most ambitious effort
for simulation of EPR spectra is the family of programs by Graeme Hanson that are
evolving from Sophe (Chapter 5 in Lund and Shiotani, 2003). The version called
XSophe is available from and supported by Bruker BioSpin. The version now under
development will include simulations of fluid solution and rigid lattice CW spectra with
few limits on the spin multiplicity or the number of nuclei interacting with the electron,
and also simulations of time domain spectra. In simulating complex EPR spectra,
computed g and hyperfine could be very useful starting points for the simulations
(Mattar, 2005).

The Literature of Simulation of EPR Spectra

There is a vast literature about simulation of EPR spectra. Most of the early literature is
cited in the reviews of early use of computers in EPR by Van Camp and Heiss (1981) and
Kirste (1994), which supplement the information in this booklet. Pilbrow (1996) and
Weil (1999) also recently reviewed aspects of the simulation problem. Relaxation times
are very much shorter for electron spins than for nuclear spins under most common
circumstances, so many of the NMR experiments with elaborate multiple pulse sequences
are not feasible in EPR. However, the fundamental principles of the spin physics are
basically the same, and descriptions of the effects of pulse sequences in NMR are
transferable to EPR. Some useful leading references about the effects of pulses on
nuclear and electron spins include the following: the program GAMMA (Smith et al.
1994; Shane et al. 1998), pulsed EPR (Kevan and Bowman, 1990), 2D ESE (Eviatar et al.



1995), HYSCORE (Szosenfogel and Goldfarb 1998), multiple echo sequences with
imperfect pulses (Kingsley, 1998), spectral rotation (Hornak and Freed, 1986), multiple-
pulse NMR (Turner, 1989), phase cycling (Jerschow and Miiller 1998), ESEEM (Reijerse
and Keijzers, 1987; Benetis and Westerling, 1990; Benetis and Nordh, 1995; Jeschke and
Schweiger, 2001; Madi et al., 2002; Stoll and Schweiger, 2003; Jeschke web site; Kulik
and Dzuba 2004), EasySpin (Stoll and Schweiger, 2006; Stoll web site, Epel web site),
field-swept pulsed EPR (Drew et al. 2001).

The Scope of Simulations of EPR Spectra
A full simulation has to account for all of the terms in the spin Hamiltonian over the full
range of the parameters listed in the next section.

H:BeBTog0§+§T0D0§+§0A0i—ganBTOi (from Weil et al., page 104)

The scope of spectral simulation parameter space is only hinted at by the following
list:
Fluid solution with hyperfine splitting
Magnetic field dependence - the Breit-Rabi effect
Intermediate tumbling
Powder spectrum
Single crystal
Liquid crystal, partial orientation
S>7"
S =1 Triplet
S > large D
High-field S> '
Parallel mode
Spin-spin interaction - exchange and dipolar
AB quartets
Half-field transition
Nitroxyl-nitroxyl
Metal-nitroxyl
Pulsed (DEER)
Rapid scan spectra
Pulsed EPR — many experiments including ESEEM, DEER, HYSCORE

Making programs efficient, powerful, and flexible involves insightful choices of ways to
interpolate and extrapolate, methods of distributions of parameters, various grids for
powder spectra, etc. There are so many regimes to simulate that programs usually are
optimized for one or another regime, and a suite of programs is needed to encompass all
of the experimentally accessible range of spin and lattice dynamics, CW and pulse,
saturation and passage effects, S =2 and S > 1/2 , temperature, magnetic field and
microwave frequency.

Even with all of this sophistication, few CW simulation programs incorporate
fundamentals of relaxation times, distributions of microwave B; over the sample, etc.
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Selected Examples of CW EPR Spectra
Each of the selected spectra includes a simulation for which details are given in the cited

paper.

High-resolution, rapidly tumbling, essentially first order

One of the most familiar EPR samples is a,o’-diphenyl-B-picryl hydrazyl (DPPH),
although usually it is used as a solid, in which strong exchange interactions narrow the
signal to a single, slightly anisotropic, line a little more than a gauss wide at X-band. In
dilute, de-oxygenated, low-viscosity solution, one can observe an enormous number of
lines, as in the figure. Dalal et al. (1973) simulated the CW spectrum for DPPH using
hyperfine couplings measured by ENDOR. The simulation is convincing, but does not
look exactly like the experimental spectrum. The problem is probably that 100 kHz
magnetic field modulation was used in recording the spectrum, so the lines are
broadened, and computer simulation programs available thirty years ago could not deal
with modulation sidebands.

(a)

Wl | 1 “‘ m “’l'» [

=
10 Gauss

FIG. 4. (a) EPR of (10™M) DPPH in n-heptane at 20°C.
(b) Simulated EPR of DDPH using hyperfine couplings
from Table I.
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Figure 3. X-band spectrum of DPPH, with simulation. (Dalal et al. 1973)

Second order effects

The commonly-used X-band frequency is high enough that second order shifts (Breit-
Rabi effect) are not very important unless the hyperfine coupling is very large. (See
Weil, Bolton and Wertz, pages 73, 116, 455). However, at low frequencies used for in
vivo studies, even the N hyperfine in nitroxyl radicals is large enough relative to the
electron Zeeman energy to result in unequal spacing between hyperfine components.

40 uM tempol in 0.15 M KCI
at 250 MHz

\ [
|

o r ot 1t 1 T
60 70 80 90 100 110 120
Magnetic Field (gauss)

Figure 4. Tempol in 0.15 M aqueous KCI solution at 260 MHz (ca. 90 G), with
simulation using a program that includes the second order shifts due to the Breit-Rabit
effect. Although the 3 '*N hyperfine lines of a nitroxyl radical are nearly equally spaced
at X-band and higher frequencies, they are unequally spaced at lower frequencies.

Intermediate tumbling



Long ago (McConnell, Kivelson, Rogers and Pake 1956-1966) it was shown that
hyperfine-split EPR signals depend on the nuclear spin quantum number according to
approximate equation:

2

YW3T,

AH =

:A+BmI+Cm%

This equation assumes that there is no unresolved nuclear hyperfine, and that the
derivative spectrum is recorded. This equation, in various forms, is the basis for
estimating tumbling correlation times for nitroxyl radicals from ratios of peak heights.

Amavadin in water
at room temperature

' I ' I ' I ' I ' I
3000 3200 3400 3600 3800
Magnetic Field (gauss)

Figure 5 This dependence of line width on nuclear spin was used to simulate the CW

the

spectrum of a vanadyl complex in water at room temperature (sample of amivadin was

provided by Prof. Debbie Crans, Colorado State University).



More sophisticated programs are available to simulate the CW spectra of the very
important nitroxyl radicals in order to estimate rates of motion of the radical.

TEIO in mineral oil heavy 17.5 °C 1.81E+09 Hz
experiment ’
——————— simulation

TPHIO in mineral oil heavy 17.5 °C 1.81E+08 Hz
experiment
"""" simulation

3240 3260 3280 3300 3320 3340
Magnetic field (G)

Figure 6. Intermediate tumbling of nitroxyl radicals, with simulation using the NLSL
program provided by Budil. The radicals are

TPHIO MW =438 TEIO MW =236
Ph Ph HaCH,C CH,CHj
N—O N—O
Ph Ph HzCH,C CH,CHg

The radicals were provided by Steven E. Bottle, Queensland University of Technology.

A-9



Molecular dynamics effects are discussed by Schneider and Freed (1989), Budil et al.

(1996), Freed (2005), Marsh et al. (2005), Beth and Hustedt (2005).

Powder spectrum

The anisotropies that are largely averaged by motion in solution contribute to broad

spectra, such as sketched in Figure 7:

(a)

INTENSITY

(&)

(c)

MAGNETIC FIELD (T)

FIGURE 4.7 (a) Idealized absorption
line shape for a polycrystalline system
containing spin centers each having an
axis of symmetry (with g, < g, ) and no
hyperfine interaction. (b) Computed
lineshapes for randomly oriented sys-
tems having uniaxial symmetry. The
component (lorentzian) lines are given
widths of 0.1, 1.0, 5.0 and 10.0mT,
For clarity, the displays have been nor-
malized to equal maximum amplitudes.
(¢) First-derivative EPR powder spec-
trum for a system of uniaxial symme-
try, with g, < g, [e.g., the V' center in
MgO (Section 4.2)]. [After J. A. Ibers
and J. D. Swalen, Phys. Rev., 127,
1914 (1962).]

Figure 7. Contribution of anisotropic g values to powder spectral line shapes.
Anisotropic hyperfine couplings have similar effect. (from Weil et al. 1994)

S>%

Spectra of species with S > 2 are a challenge to simulate, and even to acquire.

S>% Fe

A-10



Gaffney and Silverstone (1998) showed that for S > % the looping transitions that occur
in field-swept spectra near avoided crossings can be simulated by cubic approximations
to the transition frequencies. The resonance fields form a surface in B space. One set of
such patterns was reproduced on the cover of an issue of Journal of Magnetic Resonance.

Journal of Magnetic Resonance

Figure 8. For S > )% some transitions in field-swept spectra near avoided crossings form

loops in B space. (Gaffney and Silverstone 1998)

a : —— 23 by D=0.27cm™’
cubic fit E=0.0162cm’
» ------ 233 by linear g = 2.0023
g E approximation v, = 9.23 GHz
g-'g o, = 150 MHz
P
_D —
o=
[
100 200 300 400 500
B (mT)
PR | 1 | I Tt . | i i 1

L b 253 by D=0.27 cm™'

1=) cubic fit E=0.0162¢cm™"
g'u; ------ 233 by linear g =2.0023

25 approximation v, =9.23 GHz

© =

s 2 o, =150 MHz

]

S

G

e

5]
T
100 200 300 400 500
B (mT)

FIG. 14. Calcsu.lanod spectrum as sum of all significant transitions between the
levels of the § = - transferrin system for an isotropic distribution of spins, with
parameters shown and with Gaussian lineshape (Eq. [8], with &, = 150 MHz).
Contribution of the 2 — 3 looping transition to the powder spectrum is by cubic
fit (solid line) and by linear approximation (dashed linc); all other transitions by
linear approximation. (a) Absorption; (b) derivative of absorption.
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Figure 9. Calculated spectra for S = 5/2 Fe(Ill) in transferrin. (Gaffney and Silverstone

1998)

A Puzzle

If one were shown the spectrum in Figure 10 with no knowledge of the sample, it would

be a great puzzle.

1000 2000

Field (G)

3000 4000

Figure 10. Zhong et al. (2006) obtained this spectrum at 77 K for the compound shown

in Figure 11, with the metal oxidation states Mn(III) (d*) and Cu(II) (d°).

—“—S =5/2
Alkg=22 K
——85=3/2
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Figure 11. A complex containing two different metals interacting with one another. The
spectrum in Figures 10 and 12 are for the case of Mn(II) and Cu(Il). (Zhong et al. 2006)

Coupling between the Mn and Cu spins yields net spins of S =3/2 and S = 5/2. The two
spin manifolds turned out to be separated by about 22 K, so both are populated at 77 K,
and the spectrum is assigned as shown in Figure 12.

—— =]

g,%2

1000 2000 3000 4000
Field (G)
Figure 3. Frozen-solution X-band EPR spectra of 1[MnCl, Cu] dissolved
in chloroform/dichloromethane (1/9) (77 K).

Figure 12. The Mn nuclear hyperfine (80 G) is well-resolved on the g = 4 signal for the S
= 3/2 manifold. (Zhong et al. 2006)

Frequency dependence of EPR spectra

There are two major impacts on CW EPR spectra of obtaining spectra at different
magnetic field strengths (and associated RF/microwave/IR frequencies). Spectra become
more first-order, and thus inherently easier to interpret the higher the magnetic field. The
Breit-Rabi effect results in unequal spacings between hyperfine components when the
hyperfine coupling is a significant fraction of the Zeeman field. The second major effect
is that when zero-field splittings (ZFS) are larger than the Zeeman energy, the some
transitions will not be observed. Using high field and high frequency makes it possible to
observe these transitions. Figure 4 contained an example of the Breit-Rabi effect on
nitroxyl radical spectra at 250 MHz, and the following examples illustrate the
dependence of CW spectra on frequency and magnetic field.

The first example is a set of spectra of a copper(Il) complex at 5 different microwave
frequencies at Q-band and below. This is an illustration of the appearance and even
observability of hyperfine splittings as a function of magnetic field.



A
10500 ﬂ—zsou
|

: nTo“_““M1f’|de' (500

FIELD (GAUSS)

were run at the National Biomedical ESR Center in Milwaukee, W1, USA.

Figure 1. EPR spectra of ®'Cu doped into bis-(2,4-pentanedionato)palladium(II)
powder, “’Cu/Pd(acac);, at various frequencies. Field values are indicated for begin-
ning and end of scan in units of gauss (1 Tesla = 10* gauss) on each spectrum. All
spectra were run al approximately 100 K using appropriate settings of power and
modulation amplitude. Spectrum (e) required time averaging. (a) 34.7803 GHz (b)
9.3760 GHz (c) 2.3899 GHz (d) 1.3931 GHz (e) 560.4 MHz. Spectra (a), (b) and (d)
were run at the [llinois ESR Research Center in Urbana, IL, USA. Spectra (c) and (¢)

Figure 13. Powder spectra of the Cu(Il) complex of 2,4-pentanedione (acac) doped into
the Pd complex. Everyone would recognize the X-band spectrum of copper(Il) in B, but
interpretation of the lower-frequency spectra is less obvious upon visual inspection. A
simulation program has to be able to match all of these spectra (from Belford et al.1987).

Similarly, the top spectrum in Figure 14 is easily recognized as vanadyl based on the 8
lines of varying height, but the lower spectrum requires prior knowledge of the sample

and the microwave frequency.
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4000

1200

i |
FIELD (GAUSS)

Figure 2. Room-temperature, solution EPR spectrum of VO(acac), dissolved in a
1: 1 mixture of toluene and chloroform showing loss of hyperfine transitions at very low
frequency. Field values are indicated for beginning and end of scan in units of gauss
(1 Tesla = 10" gauss) on each spectrum. (a) 9.7645 GHz (b) 594.8 MHz. Spectrum (a)
was run at the Illinois ESR Research Center. Spectrum (b) was run at the National

Biomedical ESR Center.

Figure 14. Comparison of X-band and ca. 600 MHz spectra of VO(acac); in fluid
solution. (Belford et al. 1987)

EPR transitions that cannot be observed at X-band
For some spin systems, there are EPR transitions that cannot be observed at X-band. In

these cases, simulation is useful to predict where transitions could occur, and hence the
magnetic field and frequency required to detect them. The Figure 15 shows 95 and 285
GHz spectra, with simulations, for d* Cr(IT) (Dobe et al. 2004).

B
sil Y—J : M‘nlr

95GHz

S e
- |
_Jl {.V./nr___qﬂ_ﬂw_ sim

"l‘llll]lll!lllllllIllil
i} 2 4 [ 8 10 12
Field (T)
Figure 6, Experimental HFEPR spectra of (ND;):Cr(D20)4(S05);, obtained
using excitation frequencies of 284.9973 (25 K) and 94.9991 GHz (5 K)
and simulations using the parameters D = =243 cm™, £ = 0.0895cm ™',

Intensity
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Figure 15. High-field, high-frequency CW EPR spectra of Cr(II), d*. With ZFS D = -
2.43 cm™, no spectrum would be observed at X-band. (Dobe et al. 2004)

—A

S—A

Bunnds euobu |

Figure 16. Energy level diagram for V(III) is d* (Beaulac et al. 2006).

Table 2. Resonam Field Positions for HF-EFR Data Obtained for
[V{urea)s}{ClOs)s at § K and Spin Hamiltonian Parameters Derived from
a Least-Squares Fit 1o the Observed Data
frequency obsd field caled field difference
(GHz) Q) (G) obsd = caled
189.9982 90221 90 596 =375
189.9982 114 970 114 946 3
2299988 32074 31 706 367
2299988 51543 51 585 =42
2399988 107 320 107 179 141
3449982 51 085 51 688 —603
3449982 83 698 83611 87
3449982 101 450 101 699 —249
379.9964 73272 73217 55
3799964 98 063 98076 -13
3799964 116 142 116041 m
param value
& 1.848(2)
s 1.832(4)
& 1.946(7)
D 6.00(2) em™!
E 0.573(6) cm™!

;lt
I

Normalized Intensity

4 10 12
Magnetic Field [T]

Figure 4. (bottom) Experimental powder HF-EPR spectrum of [V(urea)s]-
(Cl0y); at 5 K and a probe frequency of 380 GHz. (top) Simulated spectrum
using the spin Hamiltonian described in the text (eq 1) and the parameters
listed in Table 2.

Figure 17. The field/frequency required to observe the EPR spectrum depends on the
magnitude of the ZFS. For the V(III) hexa-urea complex, D = 6 cm™, so a large magnetic

field is needed.
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Magnetic Field (T)

130 GHz

|
H}M

0 1 2 3 4 5 6 7 3

Magnetic Field (T)

Fig. 8. The Q- and D-band spectrum of Ni(NH,),(SO,),. The lower traces are simulations with the
parameters: D = 2.24 em™!, E=0.38 em™",

Figure 18. d® Ni(II) is another challenging spin system to simulate. As shown, high-
field, high-frequency spectra are important. (from Reijerse et al. 1998).

Mn(II)

Mn(II), &, can always be seen in X-band and Q-band EPR because it has transition
between S = £ ' states. However, as sketched in the diagram from Mantel et al. (2004),
there are 5 possible EPR transitions, each split into 6 lines by the Mn nuclear spin, and
then further split by nuclei in ligands. Anisotropies in g or hyperfine further complicate
the spectra, whether in solution or in solids. Simulations of Mn(II) spectra have to take
all of these possibilities into account. One rarely sees all of the 30 transitions predicted
for Mn(II). One case in which they are observed is the oriented single crystal spectrum in
figure 19.

[Zn(Mn™ )(CgH {NO)KCI O,),

1000 Eu_u_ss_l
Figure 6. X-Band, room-temperature epr spectrum of |Zn(|\‘.lnn)—
(C H,NO), I(C10,), oriented with the magnetic field paralle] with
the molecular z axis of [111] rhombohedral crystallographic axis.
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Figure 19. Oriented single crystal of [Zn(Mn(II))(CsHsNO)s](ClOs4), in which the 6 Mn
hyperfine lines are observed for each of the 5 components of the S = 5/2 spin system.
(from O’Conner and Carlin 1975)

ZFS ZEEMAN EFFECT

—l

B
HYPERFINE COUPLING
—_—
o
*17 —
=

Figure 2. ORTEP view of [Mn{rButerpy(Ns)]; hydrogen atoms
have been omitted for clarity

Figure 21. For the Mn(II) complex shown in this figure, EPR spectra were recorded at
5K and 10K at 285 GHz. (Mantel et al. 2004).
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#2023+ 50238

O {10 K, exp)

E (10 K, sim]

[4i2= 12y

85 9.0 8.5 10.0 105 11.0 15
am

Figure 3. Plots of energy vs. field for the six levels arising from an
S = 3/2 spin state using the parameters given below; the field is
parallel to the molecular z axis (A); arrows indicate the observed
resonances; experimental (B and D) and simulated (C and E) pow-
der 285 GHz EPR spectra of 1, recorded at 5 K (B and C) and
10K (D and E?; the parameters used for the simulation are: D =
=0.250(5) em™!, E = 0.044(5) em™' and g, = g, = g. = 2.000(5)

Figure 22. Transitions to which the peaks are assigned are labeled on the spectra.
(Mantel et al. 2004).

Since at low temperatures only the lowest Zeeman levels are populated, the lowest-field
peak (ca. 9.11 T) was assigned to the |5/2, -5/2> to |5/2, -3/2> transition. This implies
that D is negative. The separation from the center of the spectrum is 4D/g,3, implying
that D = 0.25 cm™ (Mantel et al. 2004).

Mn(III), d* (S = 2), also has some interesting challenges.

Chart 1. Structures of Internally Protonated Freebase N-Confused
Porphyrin (left) and [Mn(NCTPP)(py)2] Complex (right)®
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Figure 23. Harvey et al. (2005) showed the resonance field vs. microwave frequency for
this spin system for the N-confused Mn porphyrin shown in the figure. The ZFS is large
enough that no EPR signal is observed at X-band.
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Figure 24. Multifrequency EPR spectra of the polycrystalline solid were measured and
used to fit terms in a Hamiltonian of the form:

H=pBegeS+D[S; - S(S+1)/3]+E(S; —S3) + 4th order ZFS terms)

The 4™ order ZFS terms were”’zero within statistical error.”

More information about magnetic-field-dependence of EPR is in the booklet for the 2001
Workshop.

Computer Simulation Programs

Most computer simulation programs are locally-written to solve a particular problem.
Many of these are mentioned in the reviews cited, and currently-maintained programs are
often mentioned on the web sites of EPR laboratories.

A few pulsed EPR simulation and analysis programs are available, such as GAMMA
(Smith et al. 1994; Shane et al. 1998), EasySpin (Stoll, Epel) and the DEER programs by
Jeschke. The most extensive set of CW EPR simulation programs is Sophe, written by
Graeme Hanson. An outline of its features is in the following figure (from Hanson in
Lund book). It is being extended to pulsed EPR, as described in detail separately by
Graeme Hanson in this booklet. Additional leading references about pulsed EPR were
cited above, and in the section by Graeme Hanson.
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Experiments
Continuous Wave EPR Spectra displayed in XeprView.
Energy level diagrams, transition surfaces and transition roadmaps
displayed in Netscape.
Homotopy will be available in version 2.x of XSophe.

Pulsed EPR spectra will be available as an additional component
of version 2.x of XSophe.

Spin Systems.
Isolated and magnetically coupled spin systems.
An unlimited number of electron and nuclear spins is supported
with nuclei having multiple isotopes.
Spin Hamiltonian Interactions
2" order Fine Structure Interaction, 4" and 6" order corrections
[S.D.S, B4, B6)
Isotropic and Anisotropic Electron Zeeman [ gBB.S, f B.g.S].
Isotropic and Anisotropic Hyperfine [ aS.I, S.AI].
Nuclear Zeeman Interaction for nuclei [g, B, B.I].
Quadrupole [I.P.I].
Isotropic Exchange [ ], 8,.5,].
Anisotropic Exchange (dipole dipole coupling) [ S,.J.5].
Spectra types:
Solution, randomly orientated and single crystal.
Symmetries:
Isotropic, axial, orthorhombic, monoclinic and triclinic.
Multidimensional spectra:
Variable temperature, multifrequency and the simulation of
single crystal spectra in a plane.
Methods
Matrix diagonalization - mosaic misorientation linewidth model.
Sophe Interpolation.
Optimisation (Direct Methads)
Methods:
Hooke and Jeeves.
Quadratic variation of Hooke and Jeeves.
Simplex.
Two Simulated Annealing methods.
Spectral Comparison:
Raw data and Fourier transform.

Vision for the Future

The long-term goal, and the reason for combining calculations of g and hyperfine and
simulations of CW and pulsed EPR spectra all in one Workshop is the merger of these.
Our vision is that one would hypothesize the species being observed, compute from first
principles the g-vale and hyperfine couplings, including the effect of solvent, use these to
simulate the EPR spectrum, and compare with the observed spectrum. Computed
hyperfine couplings and g-values, compared with the best-fit simulation will possibly
identify the species, allow assignments without some of the isotopic substitutions that
other wise would be necessary, and feed back to the computational models to improve the
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basis sets for future use. The quantum mechanical calculations are improving rapidly, and
the EPR simulation programs are improving rapidly, so we may see the practical
implementation of this vision in the near future.

A greater challenge is to compute solvent-motion-induced modulation of zero field
splittings and modulation of spin-orbit interactions with sufficient accuracy to predict
electron spin relaxation times. In principle, it should be possible to use molecular
dynamics calculations together with quantum mechanical estimates of dependence of
spin-orbit interactions on molecular geometry to compute the dynamics of electron spin-
lattice relaxation.

Section 2. Some Calculations of g and a values of radicals and
metals

We now turn to the quantum mechanical calculation of g-values and hyperfine couplings.
The first summary relates to organic radicals. This is followed by calculations for
transition metal complexes. Since the intent here is to provide references to examples
that illustrate the fundamentals to be presented later in this booklet by Saba Mattar and
Sarah Larsen, most of the information is provided in tabular form. In most cases, only
one or two (hopefully representative) numerical values are extracted from papers that
often contain detailed comparisons of multiple levels of computation and comparisons of
basis sets.

Literature Search

This brief introduction mentions a few leading references from the past several years. It
is in no way comprehensive or exhaustive. Papers cited contain much more information
than is even hinted at here. The goal of this introduction is to show a few of the types of
molecules for which g-values or hyperfine couplings have been computed, and roughly
the quality of agreement between experiment and theory attainable. No attempt has been
made to give credit for “first” papers in either fundamental theory or applications. Most
papers selected for inclusion in this summary were published in 2000 or later. Earlier
papers can be found via the papers cited in these and in the reviews cited.

Introduction

For many years educators have used the HMO interpretation of the EPR spectra of the
naphthalene radical anion (McKelvey 1987) or the benzosemiquinone radical anion
(Beck and Nibler, 1989) as an experimental demonstration of quantum mechanics for
undergraduate students. In recent years various quantum mechanical calculational
packages, such as Gaussian and ADF, have been shown to reproduce experimental
molecular structures and energetics with good fidelity, and these programs now include
capabilities to calculate g values and hyperfine couplings for open-shell molecules.

“One of the most challenging tasks in computational chemistry is the accurate
calculation of the isotropic hyperfine components” Mattar and Stephens (2000). They
performed the first such calculation for the commonly-used nitroxide free radical,
tempone.
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Background introduction and state-of-the-art applications are in the book by Weinhold
and Landis (2005), the volumes edited by Lund and Shiotani (2003), by Kaupp, Biihl, and
Malkin (2004), and the review by Improta and Barone (2004). The Amsterdam Density
Functional 2005 was reviewed by Bomble (2006).

Selected Results for Organic Radicals
Most of the examples selected here are for nitroxyl and semiquinone radicals.

The calculation of g values appears to generally agree better with experiment than the
calculation of hyperfine values. Calculation of g values for organic radicals has been to
within better than 1 part per thousand of the experimental value for many radicals.
Mattar et al. (2006) found that UB1LYP and UPBEO give nearly equivalent results, and
there is little advantage in enlarging the basis set from EPR-II to aug-cc-pVTZ.

Mattar and A. D. Stephens (2000) state “the unrestricted UBILYP HDF method provides
us with electronic spin densities of sufficient quality to be able to directly compare the
experimental and computed a”° values. In the case of TEMPONE, which is a
representative of spin labels, the agreement between theory and experiment is very good.
This is only achieved if the effects of solvent, vibrational averaging of the NO1 bending
mode and rapid interconversion of the twisted ring conformers are taken into account.”

For DTBN the calculated isotropic N hyperfine is in close agreement with experiment for
several solvents (Mattar and Stephens, 2001). The largest discrepancy is for water.
When using the PCM model, the calculated value is 16.28 G. When a supermolecule of
DTBN and one H,O is optimized, the hyperfine increases to 16.78, in closer agreement
with the experimental value of 17.16 G.

For nitroxyl radicals, Improta and Barone (2004) summarized (their table 5) the strong
dependence (up to about a factor of two) of the computed N hyperfine coupling on the
out of plane angle. Plato et al., computed that deviation from planarity of a nitroxyl
radical strongly affects the slope of a plot of g vs. nitrogen A,.

Specific hydrogen-bonding to the NO groups was explored by Engstrom et al. (2001)
using 1 or 2 water or methanol molecules. The ROHF method was judged to exaggerate
the effects of H-bonding. Owenius et al. (2001) compared experiment and theory for
MTSSL in several solvents, and concluded that DFT gave more accurate results than
ROHF methods.

Pavone et al. (2004) summarize prior calculations as showing that the polarizable
continuum model (PCM) leads to good results for radicals in non-hydrogen-bonding
solvents, but that inclusion of explicit water molecules together with the PCM is needed
in the case of hydrogen-bonding solvents.
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Ikryannikova et al. (2004) concluded that a cluster of >40 molecules of water is required
around a nitroxyl radical to model a complete aqueous shell.

Further examples of the importance of solvation in the calculation of hyperfine is given in
Mattar et al. 2004, where the calculated hyperfine couplings of 1,4-dihydro-9,10-
anthrasemiquinone are closer to the experimental values when methanol and DMSO are
included than are the gas-phase calculations. Improta and Barone (2004) also review
methods for computing solvent effects on hyperfine couplings. They conclude “A
combined PBEO/QCISD approach can further extend the reliability of the computational
model to species such as nitroxides for which conventional and hybrid density functionals
are not sufficiently accurate.”

Computations for perdeutero-tempone and tempo-palmitate show that the effects of
solvent are local, with similar effects for the rather different molecules (Benzi et al.,
2005). Solvent have stronger effect on the gyx component of the g tensor than on the yy
and zz components. Solvent effects on the N hyperfine are larger than the effect on g.

Barone and coworkers ( D’ Amore et al, 2003; Cimino et al., 2006) state that all density
functionals underestimate the absolute value of Ay in nitroxides, but quadratic
configuration interaction approach coupled with purposely tailored basis sets provides
accurate results. They obtained good agreement with experiment for solvents hydrogen-
bonded to the nitroxyl.

Stipa (2006) compared 15 levels of DFT theory with experimental values for a
dipyridinium radical. Triple C basis sets gave the poorest agreement with experiment.
Several models for solvent-solute interaction were tried, but without much improvement
in agreement. The best average agreement was with IPCM solvent model, PBEO
functional and 6-31G(d) basis set. The g-factor agreement was very good.

Kaupp and coworkers ((Kacprzak et al. 2006) use B3LYP for hyperfine calculations “in
combination with ... EPR II basis set (which was specifically designed for hyperfine
calculations).” They state that “It is well known that gradient-corrected functionals such
as BP86 underestimate the spin polarization in « radicals and thus provide less accurate
hyperfine couplings.” A second order perturbation approach “has been demonstrated to
provide unprecedented accuracy in calculations of g-tensors for organic radicals.” This
paper analyzed in detail the effect on many hyperfine couplings of hydrogen bonding to
the semiquinone in the Qy site in quinol oxidase. Many computations were compared for
different models.

Singel and coworkers (Boulet et al. 2000) showed that comparison of different levels of
calculation result in ambiguous assignments of couplings, and that in the case of
apogalactose radical the determination of hyperfine couplings may require detailed
accounting of the protein environment, and not just a dielectric continuum model.

Computational results are getting good enough to guide interpretation of experimental
results. For example, Saracino et al. (2002) computed the pKa for 2,2,5,5-Tetramethyl-3-
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carboxypyrrolidine, and, finding it in disagreement with the value in the literature,
remeasured the pKa and found it to be closer to the computed value. The assignments of
splittings in the EPR spectrum of the protonated radical obtained by reduction of the dye
called Orange II were based on computed spin densities and hyperfine couplings (Abbott
et al., 2005).

It appears that for organic radicals, including those with atoms as heavy as S, g-values
can be computed within experimental accuracy with the most sophisticated calculations,
including solvent effects. Hyperfine couplings of protons often can be calculated in
reasonably close agreement with experiment, but couplings to N, especially in flexible
ring systems such as those in nitroxyl radicals, are rarely in agreement with experiment.

Trends in computed hyperfine couplings among sets of radicals or among solvent
environments for a given radical are generally better than the absolute values.

The above papers and several others are in the Tables for quick review. Each of the
papers cited contains much more information than was sampled for these summary
tables.

Table 1: 5- and 6-membered ring nitroxides

radical level of solvent gexpt. | gcalc. An (G) | Ay calc. | reference
calculation expt.
tempone1 UBILYP, yes, 1 16.1 15.1 Mattar
Barone triple-¢ | PCM? 16.27 2000
EPR-III
DTBN UBILYP, UAHF-PCM 17.16 16.78 Mattar and
Barone triple-C Stephens20
EPR-III 01
DTBN B3LYP BP86 | PCM;super Ag 3241 | 3192, Rinkevicius
6-31G(d,p) molecules; ppm* 3344 et al. 2004
several
solvents
diphenyl B3LYP BP86 | PCM;super | Ag2761 | 2773, Rinkevicius
nitroxide 6-31G(d,p) molecules; | ppm* 2933 et al. 2004
several
solvents
pyrrolid- ROHF/cc- H,O H- 2.0076 Engstrom
ine’ pVDZ AMFI bonding 2.0061 et al. 2001
2.0022
MTSSL B3LYP/EPR- | H,O H- 2.00800 | 2.00750 16.12 11.25 Owenius et
I bonding 2.00586 | 2.00554 al. 2001
BP86/IGLO-II 2.00199 | 2.00213
pyrrolid- Perdew86 15.9 7.2 Engstrom
ine’ IGLO-II 2002
carboxy- PBEO several, 16.05 16.12 Saracino et
proxyl 6-31G(d) results for 2 al. 2002
carboxy- H,O 17.06 16.74
tempo
(CH;),NO 6-31+G(d) gas phase; 13.3 Pavone et
PBEO + MD water al., 2004
15.3
H,NO BP86 ZORA- | 32 H,0 2.0057 | 2.0080 27.1 17.8 Neugebauer
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Qz4p (gas) et al. 2005
35.9
(H:0)
tempo- PBE1PBE n-pentyl xx a,, Benzi et al.
palmitate 6-31G cyano- 2.00975 | 2.00837 19.13 18.18 2005
biphenyl
tempo PBEO/QCISD | PCM Cimino et
6-31+G(d,p) phenol, 16.58 16.34 al. 2006
EPR-II benzylic 15.91 15.89
alcohol

Notes to the table:
1. twisted boat conformer

2. Tomasi’s PCM method places the radical in a cavity in a continuum of dielectric
constant 78.3

3. Ananalog of MTSL was used as a model: 2,2,5,5-tetramethyl pyrrolidinyl-1-oxyl

4. The values selected are for solvation by 2 water molecules.

Table 2: Imidazoline nitroxyls

radical level of solvent | g g A (G) An reference
calculation expt. | calc. | expt. calc.
imidazo-line | PRIRODA DFT 41 15.8 13.5 Ikryannikova
H,O 2004
imidazo-line | BILYP EPR-II H,O 8.25¢ 6.94 Matteo et al.,
1999
CH3—Im& BILYP PCM 7.6 5.7 Adamo et al.
imidazoline” 7.9 7.3 1999
@ poorer agreement for C coupling.
& 2-methyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide
# 2-(2-imidazolyl)-4,4,5,5-tetramethylimidazoline- 1-oxyl-3-oxide
Table 3: Other organic radicals
radical level of solvent g expt. g calc. Aexpt. | Acalc. | reference
calculation (G)
pyrimidine bases B3LYP 9 basis up to 10 N10 -0.02 Naumov et
e.g., uracil sets, e.g.., H,O N34.08 | 4.1 al. 2003
6-31+G(d,p)
di-pyridinium* B3LYP PBEO 2.00308 2.00302 | N 0.648 | N 0.180 | Stipa 2006
many levels to
0.726
allyl B3LYP/DZP’ none H1 Adamo et
-39.0 -39.5 al. 1995
RHCp=C,H, BILYP H15.7 17.2 Jaszewski
E and Z isomers 6-311+G(2df,p) C 107 112 and
F 101 102 Jezierska
2001
H,CNO' ROHF UCCD "N 33.7 Jaszewski
UQCISD(T) 263to | and
6-311G(d,p) 30.2 Jezierska
2001
iminoxy radicals BILYP none 2.0042 N31.4 30.8 Tabaka and
CsHsCOC(NO)H E EPR-III H,27.6 Jezierska
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isomer H,0.3 29.05 2004
0.78

cysteine-linked tyrosyl | B3LYP 42 and ca.0to | Boulet et al.
o-methylthiocresol MPWPg6 24MHz | 16 2000

6-31G(d) MHz
1,4-benzosemiquinone | B3P86/[632|41] 'H - Boesch and
anion B3LYP 6-31G(d) 2.18 -2.42 Wheeler

1997
p-fluoranil B3P86/[632[41] PF 4.05 | "F2.54 | Boesch and
semiquinone anion B3LYP 6-31G(d) Wheeler
1997
p-fluoranil BILYP EPR-III PF4.05 | "F32 | Mattar et al.
semiquinone anion 2002
2,3,5,6-tetramethoxy- UBILYP 1 MeOH average | -0.0134 | Mattar et al.
1,4-benzosemiquinone =0.0445 2002
semiquinones, H- BP86 DZVP BII | H,0 Ag 2684 Kaupp et al
bonding and substituent | BIII propanol | ppm 2350 2002
effects
p-benzo-semiquinone, B3LYP EPR-II H,O 2.0047 2.0049 ’H0.03 | -0.02 Sinnecker
H-bonding effects MeOH et al. 2004
semiquinone” BP86 H- Kacprzak et
bonding al. 2006
analyzed

dihydroanthra- UBILYP UAHF- | MeOH 2.69 2.343 - | Mattar et al.
semiquione PCM DMSO |0.70] 0.88 2004
1,4-benzo-semiquinone | UBILYP UPBEO | 4 MeOH | 2.0047 2.0049 |2.39] -2.448 Mattar 2004
CH;-SS ROHF CASSCF 2.053 2.063 'H 10 9 Engstrom et

cc-pVDZ B3LYP 2.026 2.028 al. 2000

2.000 2.002
4,5- BILYP 2.0020 | 2.0030 | “N113 Mattar and
bis(trifluoromethyl)- 2.0004 PF0.69 | 11.28 | Stephens
1,3,2-dithazol-2-yl 2.0124 2.0133 2000
0.676

1,3,2-dithiazolyl UBILYP UPBEO | toluene 2.00697 | 2.00691 Mattar 2005

aug-cc-pVTZ
thiopheno-1,3,2- UBILYP UPBEO | THF 2.0065 2.00699 Mattar et al.
dithiazolyl aug-cc-pVTZ CH,Cl, 2006

*1,1’-dimethyl-2,2’-dicyano-4,4’-bipyridinium bis-methylsulphate; 15 different levels of
computation were compared with experiment.
* the Qy site of quinol oxidase

Other potentially relevant papers about calculations.

Some of the calculations listed in the tables used the PBEO model, which was described

by Adamo and Barone (1999).

Yagi et al., (2001) calculated the n-n* transition energies for (CH3),NO. ROHF-SCI

calculation yielded 25,461 in H,O and the experimental value is 23,753. As pointed out

by Engstrom et al. (2001), the dominant contribution to gy is due to the n-n* transition
excitation, and this is affected by H-bonding.
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The polarizable continuum model (PCM) is commonly used for solvation of radicals.
Cossi et al. (2002) describe how to use this model at several different levels. Neugebauer
et al. (2005) discuss several models of solvent effects on calculations of g and hyperfine
values for H,NO, and show the dependence of hyperfine on out-of-plane bending and on
the solvation model.

Neese (2001) presented a method that “is among the most accurate so far developed
models for the prediction of g values.” Neyman et al. (2002) present “a novel scheme to
calculate g-tensors of doublet-state systems within a density functional method” and
compute g tensors for several small molecules.

Selected Results for Calculations of g and a Values of Metals

Over the past few years there has been dramatically increased use of quantum mechanical
methods to compute structure and electronic energy levels of transition metal complexes.
Computational results are in good enough agreement with experiment for many heavy
elements that they are being used to explicate, for example, catalytic pathways. The
hardest problems are those involving 3d transition metals, which are just the cases most
commonly studied by EPR. However, even for 3d elements it is becoming possible to
compute the parameters most often measured in CW EPR — the g-value and the hyperfine
splittings. In the following paragraphs and table, we present a few examples gleaned
from the literature of the past few years to show what is possible with computer programs
now available. The discrepancies between experiment and theory constitute a prediction
of enhancements in theory that you can anticipate in the near future.

In addition to the books and reviews cited for organic radicals, see the review by Ruiz et
al. (2005) on spin distribution in transition metal complexes.

If an electron in a 4s orbital significantly contributes to a singly-occupied molecular
orbital (SOMO) then many functionals will give a good estimate of the metal hyperfine
coupling. However, if the spin density at the metal arises largely from spin polarization
it is much more difficult to compute the experimental hyperfine coupling (Munzarova et
al. 2000).

Even systems as large and complex as the FeMo cluster of nitrogenase have been
calculated (Lovell et al., 2001). Kaupp and coworkers (Arbuznikov et al., 2002)
compared many functionals for 11 main group compounds and 10 3d and 4d transition
metal complexes. They concluded that “the accurate evaluation of the EPR parameters
for 3d transition metal complexes remains a challenge.” Neese (2003) computed
hyperfine couplings for a large number of metal complexes using B3LYP and BP86,
obtaining results within 5 to 10% of experimental in many cases. No solvent was
included, but many of the complexes were coordinatively saturated. A couple of
examples from this paper are in the table.
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Neese (2001) described a method for computing g values and compared it with
experiment for several metal complexes. As is common in many papers presenting
computer g values, the reported value is the shift of g from the free-electron g value, in
ppm. For a total of 11 Ti, V, Cr, Ni, and Cu complexes, Neese computed an average
signed g shift error of -11.2, 1.2 and 8.0 ppm for BP, B3LYP, and PBEO, respectively.
More commonly, though, the g-values of metal complexes, relative to the free-electron g,
are reported in parts per thousand (ppt), whereas those of organic radicals are reported in
parts per million (ppm).

Daul (2004) proposed a new DFT-based ligand field model and applied it to tetrahedral
and octahedral complexes.

Jaszewski and Jezierska (2001) confirmed by DFT calculation the assignment of the
largest proton hyperfine coupling to the B-hydrogens of cysteine-112 in azurin. However,
even the largest basis set used with UB1LYP was not sufficient to get good agreement
with experiment for the copper hyperfine or the degree of delocalization of the copper d
orbital onto the sulfur.

Saladino and Larsen (2003) found that isotropic Cu hyperfine was calculated more
accurately by SR UKS methods, but that the anisotropic components were calculated
more accurately with SO + SR ROKS methods. Some of the results were attributed to
cancellation of errors. The experimental values for the VO** complexes were for solid
state materials, so “better than 10-15% agreement with experimental A values is not
expected.” These papers contain many results, and only one arbitrarily selected value is
listed in the table as an indication of the accuracy achieved. The best values for the VO**
Ajso was achieved using BHPWII.

A rather different situation is presented by benzenedithiolato metal complexes (Ray et al.,
2005). Some oxidation states of these species can be written formally as having, for
example, Cu(Ill) and a diamagnetic ligand, or Cu(II) and a free radical ligand. The DFT
calculations describe the unpaired electron as ligand-based with mixture with a metal dy
orbital.

Garipov et al. (2006) conclude that the 6-311G(2d,p) basis set is not accurate for Cu(Il)
hyperfine estimates. Hyperfine tensor components agree fairly well at the PBE/BS2 level.

Many of the computations are for d' complexes. Aquino and Rodriguez (2005) computed
zero-field splitting (ZFS) for the Fe(IV)-oxo moiety, achieving D = 28.17 and 28.67 cm™,
in good agreement with the experimental value of 29+3 cm™. Takeda et al. (2005)
computed the spin-orbit coupling (SOC) contribution to ZFS for triplet benzene,
naphthalene, carbene, and silylene, triplet O,, and some single-molecule magnets. The
SOC contribution is small in several cases, and extremely dependent on bond angle in the
case of carbene and silylene. For a Mn(III)-Cu(II) molecule, the agreement with
experiment was close when UBLYP and UPW91 were used, but UB3LYP
underestimated the D value.
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EPR has been a major tool for finding the distribution of electron spin density in metal
complexes of non-innocent ligands. In many cases in which the ligands are known to
support multiple oxidation states (e.g., quinone, semiquinone, hydroquinone), it can
become very difficult to describe the oxidation state, and hence the electronic states, of
the metal and ligands. Remenyi and Kaupp (2005) address this question for Ru
complexes of quinonoid ligands using DFT computations. In one case, for example, a
cationic complex is described as d° Ru(IIl) with a neutral ligand, but the “anionic
complexes turn out to be approximately halfway between a d°-Ru'//semiquinone and a d’-
Ru'"/catecholate formulation.” Reasonable agreement of g-tensors was achieved.
Similarly, should (diiminepyridine)Al(CH3), be classified as Al(IT) or an AI(III) complex
of an organic ligand? Scott et al. (2005) computed g and hyperfine values at the B3LYP
and P86 level and concluded that the unpaired electron is largely in the ligand n* orbital.
The DFT calculations also showed that a splitting due to 6 equivalent H should be
assigned to the two imine methyls and not to the two methyls bonded to the Al.

DFT was used to support the interpretation of HY SCORE spectra of a rhodium-aminyl
complex (Maire et al., 2006). The calculated spin density was 41% on Rh and 28% on
each of two N, which was consistent with the hyperfine values measured by ENDOR and
HYSCORE.

One of the major problems in calculating magnetic parameters of transition metal
complexes is to achieve a proper description of core and valence shell spin polarization
without introducing appreciable spin contamination (Sojka and Pietrzyk, 2004). Honzicek
et al. (2004) summarized prior results as follows:
(1) “gradient-corrected functionals tend to overestimate important core-shell spin
polarization
(i1) exact exchange mixing improves the agreement with experimental HFC
tensor, however, in some cases spin contamination leads to deterioration of
results.”

Kaupp and coworkers (Frantz et al. 2002) published the following summary:

“Previous studies of g-tensors for transition metal complexes have indicated that the use
of gradient-corrected (GGA) or local (LDA) density functionals underestimates the g-
shift values significantly. It is possible to partly correct these deficiencies by admixture
of Hartree-Fock exchange in hybrid functionals. In contrast, for organic radicals, GGA
or LDA functionals tend to slightly overestimate the g-shifts, and hybrid functionals do
not appear to change this situation.”

The table contains just enough information about the content of the paper to whet your
appetite to consume the paper.

Table 4: Transition metal complexes (A in MHz unless other wise stated)

metal level of g expt. G calc. Aiso expt. | Ais calc. reference
complex calculation

21 metal B3LYP, Munzarova
complexes BP86, etc. and Kaupp
[Cr(CO),]" CCSD 41.5 21.9 to 1999
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CCSD(T) 40.4
9 metal B-EXX(L)- Ag 3.6 410 16.6 Arbuznikov
complexes PWI1 Ag, 78.9 to and Kaupp
Co(CO), 127.6 100 2004
20 d' metal | VWN LDA Patchkovskii
porphyrins and Ziegler
e.g., CIPCrO Agy 2000
-16 ppt -10
FeMo' spin- 11.7 8.8to 15.1 | Lovell et al.,
cofactor unrestricted 2001
broken
symmetry
azurin UBILYP Hp Jaszewski
multiple basis Cysl12 and
sets 28 MHz 45.5 Jezierska
2001
11 main meta-GGA,; plot of plot of Arbuznikov
group, 103d | B3PWII many g many et al., 2002
and 4d shifts hyperfine
couplings
3d’ in SrTiO; | SO Ag Zheng and
cr -0.0243 | -0.0240 Wu 2005
Mn** -0.0083 | -0.0092
Fe”” 0.0108 | 0.0109
Mn(H,0)s"" S | B3LYP BP86 -165 245 Neese 2003
=5/2
Cr(H,0)," S | B3LYP BP86 35 55 Neese 2003
=32
V(H,0)s>" S | B3LYP BP86 -172 -247 Neese 2003
=32
5Cu B3LYP Neese 2001
compexes PWPI1
Cu(NH;),*" N 34.2 34.3
Cu(quin) BLYP, BP86, -238 -214 to Saladino and
BPWI1 112 Larsen 2003
Cu(ox),” same -180 -228 t0 93 | Saladino and
Larsen 2003
Cu(acac), same -231 -225t0 95 | Saladino and
Larsen 2003
Cu(L-alaO), same -222 -206 to 91 | Saladino and
Larsen 2003
Cu(NH;),* SORCI g;2.241 | SORCI A -586 -591 Neese 2004
BP B3LYP g, 2.041 | 2.045 A, -68
3
2.055
Cu dimer* BP86 TZV Nux 14.5, Kababya et
B3LYP EPR- 14.5,26.5 | 14.3,14.3, | al. 2006
11 Neq 5.5, 31.5
55,7 5.1,5.2,
9.8
VO Schiff B3PWOI1 -30 -33.8and | -274.4 -183 to - Munzarova
base BHPWI1 -16.8 299.6 and Kaupp
complexes 2001
VO© + relativistic; dependenc | Saladino and
imidazole many levels e on Larsen 2005
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dihedral
angle
VO(H,0)s*" 9 density 1.933 1.923 -324 -415 to - Saladino and
functionals 21 Larsen
2003, 2005
VO(H,0)s*" | B3LYP 1.939 1.9495 -324 -293 Baute et al.
2005
VO(mal),” 9 density 1.942 1.957 -299 -297 to -2 | Saladino and
functionals Larsen 2003
VO(acac), same 1.945 1.928 -307 -319 to -8 | Saladino and
Larsen 2003
VO(gly), same 1.950 1.957 =275 -288 to 19 | Saladino and
Larsen 2003
VO(0x),” same 1.941 1.945 -295 -300 to -1 | Saladino and
Larsen 2003
Oxovanadium | B3LYP, -279 -196 Aznar, et al.
complexes BHLYP (B3LYP) | 2004
with axial -256
anionic (BHYLP)
ligands
VO(H,0)s”" | B3LYP, 1.978 1.983 -182cm™” | -165cm™ | Paine et al.
and other INDO/S (B3LYP) (B3LYP) | 2004
vanadyl 1.987
complexes (INDO/S)
vanadocene BHPB86 -207.2 -219.3 Honzicek et
complexes al. 2004
Cr(V) B3LYP 1.996 1.993 35 23.1 Kapre et al.
complex ZORA 2006
[M(L)(L) M= | ZORA- Ray et al.
Ni, B3LYP 2.05 2.07 2005
Pd, 2.03 2.04
Pt 2.06 2.06 320,278, | -302,
227 -210,
< line -129
Au(IIT)L, 2.07 2.04 width -16, -21,-
17
Cu(Il) PBE/BS1 Ag= -79 -62.4to- | Garipov et
complex’ B3LYP/BS3 | 0.0715 0.0502 101.2 al. 2006
Cu(Il) B3LYP 2:2.041 | 2.041 A 26.5 -9.7 Comba et al.
complex’ 6-31G* g 2.191 | 2.134 A, 200 -204 2006
Rh aminyl ZORA RPBE 11.1 12 Maire et al.
2006
CuNO on B3LYP Cu 158.5 Sojka and
catalyst 6-311G(d) cm’ 158.7 Pietrzyk
BPW9/LanL.2 2004
DZ
1. The example is for a particular spin state of the Mo" 6Fe”” Fe’” FeMoco cluster.
2. Cu(Il) complexes with N-phosphoryl thioureas
3. tris-macrocyclic complex with 4 N donors for each Cu
4. binuclear copper azacryptate

For multi-spin systems the calculation of zero-field splittings (ZFS) is a major challenge.
One of the simplest systems for comparison of experiment with theory of ZFS is CHs.
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Petrenko et al. (2002) calculated at the B3LYP level of theory for the triplet-optimized
geometry, D =0.8897 cm™ and E = -0.052 cm™', which should be compared with
experimental values of D = 0.7567 cm™ and |E| = 0.0461 cm™. In the case of CH, it is
reasonable to assume that most of the ZFS will be due to spin-spin interactions, but for
heavier main-group and transition metal compounds, spin-orbit interactions could also
make important contributions.
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1.1 The Eigenvalue Problem in Quantum Mechanics

The calculation of the g and A tensors involves solving the spin Hamilton Schrédinger
equation (SE). The SE is a general wave equation of the form

Oy = ep. (0.1)
In this equation the operator, O, is the mathematical form for any physically observable or

measurable quantity. It could represent position, velocity, energy, momentum etc. The
eigenvalue, ¢, is the corresponding observed numerical value of this quantity. The

eigenvector i is the wavefunction of the system. It contains all the information about the
properties of that system. Equation (0.1) may be written in the equivalent “matrix form”

: (0.2)
Onl te Onn l//n 0 gn Wn

Here, n is the number of degrees of freedom of the system.
The value of any observable is given as the statistical average of the numerical
value (eigenvalue) of a single particle:

(O)=¢= I y" (r,t) Oy (r,t)dr 0.3)
The matrix form of Eq. (0.3) is: -
011 e Oln ¥
(Oy=e=(y, - w,)| + . il i} (0.4)
On] B Onn lr//n

1.2 The Spin Hamiltonian for an Isolated “ Spinless” Electron
For an isolated electron at a position, r, in space the Schrodinger equation is:

Hy (r,t) = Ey (r,t) (0.5)

The operator, H, represents the total energy of the system.

H = Kinetic Energy + Potential Energy

PPy (0.6)
2m
n #?
H=—""Vv21V(r)
2m
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1.3 The momentum operator and eigenvalue for a free particle

A free particle, traveling in the x direction, has no potential energy. Its wave function, in
one dimension, may then be expressed as

w(X) = exp(ip,X) (0.7)

A simple differentiation with respect to x yields

% = %[exp(ipxx)]
= exp(ip,x)(ip, ) 05)
=y (x)(ip,) '
9

Sy 00= (ip, )y (0

In other words the differentiation generated an “ipy”. Multiplying by “7/i” then the
eigenvalue equation becomes

h o

——w(X)= "p, w(X). (0.9)
I OX S

Op?,at—or‘ Eigenvalue

The generated eigenvalue is the x-component of the linear momentum in 7 units.
Now, let us find the value of the linear momentum (in 7% units). The wavefunction in three
dimensional space is

w(¥) =exp(ip-T)

. A - 0.10
:expi(ipxx+jpyy+kpzz) (0.10)
Using (0.4)
RO 9 o
I Ox exp (ip,x)
. . . ho .
(np) = =(exp(-ip,x) exp(-ip,y) exp(-ip,2))| © Ty 0 | exp(ip,y) |(0.11)

exp(ip,z)
0 0 ﬁﬁ
I 0z

on expansion itresults in
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?%[exp(ipxx)] +0+0

S

<hp>:(exp(—ipxx) exp(—ipyy) exp(—ip,z) O+?%[exp(ipyy)]+0 (0.12)

h o .
0+0+——]|exp(Ip,z

- [exp(ip,z)]
Performing the differentiation gives

?(ipx)[eXp(ipxX)]

<hp >=(exp(—ipxx) exp(—ipyy) exp(—ipzz)) ?(ipy)[exp(ipyy)]

?(ipz)[exp(ipzz)] (0.13)
P, [exp(ipxx)]

=h(exp(—ipxx) exp(—-ip,y) exp(—ipzz)) py[exp(ipyy)].
p, [exp(ipzz)]

Finally by multiplying the row and column vectors
<hp>= h{ p, exp(-ip,X)[ exp(ip,x) ]

+p, exp(—ipyy)[exp(ipyy)]

+p, exp(—ipzz)[exp(ipzz)]}
<hp>=hp, +hp, +hp,

(0.14)

which is the required result.

1.4 The Electron Spin

Early experimental evidence seemed to indicate that an electron has an intrinsic
magnetic moment. Consequently, Uhlenbeck and Goudsmit suggested that the electron
had an intrinsic angular moment called the “spin”. Pauli suggested that the spin could be

incorporated in the wave equation if the original spatial wave function,  (r,t), is

assumed to be a pair of degenerate wave functions
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prt)=4 70 . (0.15)

The spin “spin-up” and “spin-down” functions are the simple vectors in two dimensional

O ’ 1 ’ ( ' )

respectively. The Cartesian components of the spin operator are

. 10 1 . 1[0 —i . 1|11 0
S, =— , S, ==, and §, =— . (0.17)
21 0 21 0 210 -1

Having defined the spin operators and wave functions we can calculate any spin eigen
value. The wave equation for the pure spin functions is then easily written in matrix form
as:

O, - O, )\(w
(Oy=e=(y, - w,)| ¢+ "~ i (0.18)
nl e Onn Wn

To illustrate the use of this technique let us find the eigenvalue of s, when the electron is
in the f state. According to Eq. (0.18) we have, n=2 and

=0 03y S

SEVSIRTH

(s)=300 1) (E)l:g)):((lo:_?)] (©.19)
=30 0’

which is equivalent to the well known result
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s,|8)= —%Iﬁ) (0.20)

1.5 The Relativistic Dirac Equation of the Free Electron

In order to take into consideration the relativistic effects of the electron, time must
also be considered. The time dependent form of the Schrodinger equation takes a slightly
different form from Eq.(0.5)

_hy(nY) 4
o —Hv(ry 0.21)
or
_ﬁl//(r’t)__ﬁ 2
ot~ om Y Y eV (n). (0.22)

If one includes the rest mass of the free electron, then square of its total energy, W, is
w? :[p-p+m2c2]c2 (0.23)

and Eq. (0.22) becomes

v T micy (). (0.24)

This leads to a four component solution which is cumbersome and difficult to solve.
Two approximations have been employed to convert the relativistic Dirac Equation to a
form that retains the essential information of the original equation. The first is due to
Foldy and Wouthsen (Phys. Rev. 78, (1950) 29.) and the second is due to Pauli (R. E.
Moss, Advanced Quantum Mechanics, Chapman and Hall, London, 1973).

1.6 The Breit-Pauli Hamiltonian

The Hamiltonian for paramagnetic molecules and free radicals must include the
interactions of the electron with the other electrons and nuclei. By employing the Pauli
reductions Breit derived the following Hamiltonian for an N electron system (G. Breit,
Phys. Rev. 34 (1929) 553, Phys. Rev. 36 (1930) 383, Phys. Rev. 39 (1932) 616):
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2

N T 9. 448,
H = mc? +—— —e@. + S.-B-2"Bi.lg xE —E. xm.
IZ_]:|: 2m (pl gelLIB i 4mC [ i i i 1]
2 4
ef; - 'Ei_ TE; - _ge:uB | Sl B
8m-c 8m’c 2m’c

iy T 7
+,Z‘§,‘{2r 4mc{ r, ”) r3 }

_ eQ.u
4ch r’ ( )+

(0.25)

ij

2

3

ij
2 S.-S. r;-S.
+% %_3(&.%)( i J)__

+ higher order terms

The terms in this equation need further explanation; the ones that do not depend on the
homogeneous external magnetic field are in blue. The one-electron terms follow:
The static potential and effective electric field felt by the ith electron are ¢, and

E, respectively. The momentum of the ith electron in an external magnetic field, B, is &
it takes the explicit form

n—-lv_8A

2
. : m, :
where A is the vector potential due to B. As a result m¢” + 2—‘ —eq,is the energy of the
m

ith electron rest mass, its kinetic energy and its interaction energy with the external
electric field. The g,44S, -B is the familiar electronic Zeeman interaction. The one-

electron spin-orbit interaction is given by _DeteS: [n, xE, —E, xx, | while en ——V-E,
4mc 8m’c?

is the electric field interaction correction. The spin Zeeman interaction is responsible for

4
YeHeTi ; S -B term and the relativistic correction to the kinetic energy is ———-.
2m*c’ gm’c

The two-electron interactions are, as expected, more complicated. The Columbic
2

. . c. . € .
repulsion between the two electrons i and j is simply — while
ij

the —

2.2 3
4m-c i r;

electron contributions to the spin-orbit interaction are given by the two terms

e T, L FTR LT . . . .
- {ni —+ (n ‘T ) ! } is the corresponding orbit-orbit interaction. The two-
I
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_80uty 1 o (
4mc rif '

The anisotropic components of the spin-spin interactions are

2218, -S. LS
geéuB {Sl SSJ _3(Si ) (ru 5 J)}

; 7

and the isotropic component is — 3 ( J éu 8 ]5 (rij )Si S,

The next step is to derive Hamiltonian components that linearly depend on the external
homogenous magnetic field, B. They are essential for EPR , ENDOR and g tensor
calculations.

1.7 Derivation of the one electron spin-orbit interaction term

One starts with the one-electron spin-orbit coupling term in Eq. (0.25). It is:

9oty S, [, xE, —E, xm,] (0.26)
Came &

By substituting the field dependent momentum as

n=-tv_CAa=p %A (0.27)
| C C

Qe g % % e
4mCZs K - JE ~E, (p CAiﬂ (0.28)

which upon expansion becomes

we obtain

945 Oelts €
4mCZs [P xE, —E,xp, ]+ 4mCC;s [A;xE, —E;xA|] (0.29)

The electric field of an isolated molecule at the ith electron is

Ny
E = Z%rik (0.30)

i
k=1 Tik
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substituting this expression in the previous equation leads to

eﬂazz( .J xry -y xp]+ ek & ZZ(EZJ A, %1, — 1, xA,](0.31)

4mC|1k1 4me cTT\ I

The first term in this expansion is the one-electron spin-orbit coupling term because

4me Fia\
ety o< [ €2,
=—=£ —=|S. |2 0.32
4mc ;kﬂ[ rnf j ] [ r]kxp]] ( )
ety <~ <o [ €Z,
==¢ — IS ) .
5 e

since the orbital angular momentum is defined as 1, =r, xp,then

HSO g :uB ZZ[ k j (033)

2me T3

Note that the terms in (0.33) only deal with one electron at a time. The interactions are
between the ith electron and the Nth nucleus. Derivation of the two electron spin-orbit
operator is similar to the one-electron case. We start with

N
3
o
D
T
»n
—_
_
X
A
~
+
D
(o]
@
=
w
M=
o —
»n
—_—~
=
X
A
~—

I

8

—~

[\

D

~—

| |

| |
@D @D
e &
= =
w w
M= 1=
M= 1=
\:ﬂw|b—‘ :ﬂw|>—t

X [Si'( B )+2S ( J):|

N
3
3]
n

T

and end with

Hso(ze):—Mii[iJ(si +28,)-1,. 0.35)

1.8 Derivation of the one electron gauge correction term

By noting that the vector potential A, = Bxr,. /2, where r,. denotes the distance

between the ith electron and an arbitrary defined origin (gauge) C. The second term in
(0.31) becomes
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Mz

kz[ j B (Bxr)xr, rikx%(er]C)}

4mc i i
(0.36)
g2 NN
- 8mc ;k 1[ 'kJ [ Bxr)xr, rikx(eriC)]
It is useful to use the identity for the triple vector product
OxPxQ=P(0-Q)+Q(0O-P)
then
(Bxrc ) %1, =1 (B, )+r, (B-1) (0.37)
and
i X(ernc) B(rik 'ric)+ric (rik 'B) (0.38)
to give

N Ny
HGC 9.458 ez.kj
eI [0

4mc =

B)(r, 1) —(S; 1 )x(re-B) | (0.39)

The equivalent two electron term is:

iil}([(s +28,)-B [y -Fe]=[ (8 +28,)-F, |[(Fe -B)]) 0.40)

1.9 Derivation of the orbital-Zeeman term

Here we start from the kinetic energy term

S EE I R IR TN
Zom 2m|1pi c P; o N

(0.41)
1 e e’
:_Z Pi - P; __(pi A A 'pi)+ —| AA
2m i=l1 neglect C C
quadratic
dismissed

keeping only the linear terms in B, this leaves
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N} 1l ed
iZﬂ:Zm__ZmE.fl(pi.AiJrAi.pi)
leg
=———) A;'p;
mCI—l

1.10 Derivation of the relativistic mass correction

The final term that contributes to the Zeeman interaction in Eq. (0.25) is

g/'lB i SlB
2m?c?

It is treated in analogous way to the previous case. Mainly:
H RMC _ _Z( 9eHs j S,-B
geluB € €
=— ——A. ||p.——A, |S;,-B
(2m202j; pl C 1)([)1 c 1) i

N e eY
_(29;],?;2)2 pi'pi_g(pi.Ai+Ai'pi)+(Ej Ai-A

i=1

neglect

higher order
dismissed

By neglecting the term that are not linear in B, this term reduces to

HRMC:_[ Jels sz S -B

2m?c?

|

(0.42)

(0.43)

(0.44)

(0.45)

(0.46)
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1.11 Summary

Thus in summary, the components of the Breit-Pauli Hamiltonian that are needed for the

calculation of the g tensor are found to be:
The spin Zeeman interaction

% = geluBZSi ‘B

The relativistic mass correction
,u
HRMC— /B E p’s, -B.

The one and two electron-spin-Zeeman gauge correctlons.

H©¢ (le)= g4ﬁ?: ZZ o p.[ 17ic)_(si'fiK)(Fic'l‘)')]’

|1K1|K

T
@
(@]
—~~
[\
D
~
|
(o]
(]
=
w
| D
M=
M=
_lﬁba
—_—
1
—_—
n
+
N
_CI)
~—
=
L1
~
il
x
I—I
|_|
—_—
m
+
N
m
\_/
"11

==l
H (26) = ke 3 3 (g 108 ).
2me FE R ) v
and the orbital Zeeman operator
H =& BuI,
2mce 45

1.12 Correlation between the experimental and computed g

tensors

}[(Fic ’

(0.47)

(0.48)

(0.49)

B)]). (0.50)

(0.51)

(0.52)

(0.53)

In the absence of any hyperfine interactions, the experimental g tensor for a paramagnetic

ion or radical with a doublet ground state is determined from

AE =hy=S-§-B
and a particular calculated g tensor component, g, , is obtained from
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0 = (0.55)

After some simple mathematical rearrangement of Egs. (0.48) -(0.53), its components are
found to be

0, = 9.5, +Ag™S, +AgLT +Agy, 5, (0.56)
where
Ag"“{“—z-&J Pya <¢) Z_vzs‘z <0> (0.57)
S 2)&F M \TE 2 [T
AgSS =%% pe/ <¢p ;g(rA)[rAr—rA#r & ¢q> (0.58)
and |

02/soc
Ag ™ =~ Z

b b o
{Z P(a+ﬂ) ob <€0p ‘E ‘¢q> P(a £).b0 <(Pp
pq

2 &) ns|2a) (0.59)
ZP(a £),0b <(Pp zez(rA)gA’y (pq>z P(a+ﬂ)bo <(Pp ) >}

The origin of the density matrices stems from the expansion of the wave function in
orthonormal sets

v, = Zp:Cpicop (0.60)
Thus the expectation value, similar to Eq. (0.4), takes the form
(viv)=(Lemnlol5con)
- ZCZiZqu (2. [] ) (0.61)
566 o 0l 500 o)
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2.1 g Tensor calculation of the thiopheno-1,3,2-dithiazolyl
TT—radical.

The thermally stable 1,3,2-dithiazolyl (DTA) n-radicals have non-zero magnetic
moments and are essential building blocks for novel magnetic, conducting and spin-
electronic (spintronic) materials. It is important to comprehend their structure-bonding
relationships how they affect their electronic and magnetic properties. Thus, it is ideal to
correlate experimental g and A tensor components for these radicals with their
corresponding calculated values. A good correlation between theory and experiment
gives a clear picture of the radical’s electronic structure-bonding relationships, net spin
density distribution and spin-orbit couplings.

Figure 1.a) Orientation and atomic numbering of the
thiopheno-1,3,2-dithiazolyl neutral radical. The molecule lies in
the yz plane and the z axis is coincident with the vector
connecting the S6 and N2 atoms.

b) Three-dimensional isosurface contour plots of the singly
occupied b, molecular orbital (SOMO).

For radicals with ground states that are described by a predominant single determinant,

hybrid density functional (HDF) techniques, in conjunction with moderate basis sets,
have been very successful in calculating their electronic structure, optimal geometries and
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A tensors. For DTA radicals, there are at least five accounts where HDF methods are
used to calculate the A tensor components.

The computations of g tensors are less prevalent than those of A tensors. Neese’s method
utilizes the coupled-perturbed-Kohn-Sham formalism and has several advantages. For
example, a variety of exchange, exchange-correlation and hybrid density functionals may
be employed. Furthermore, the effects of the solvent may also be incorporated in the
computations.

When judging the accuracy of a new computational technique, the accuracy of the
experimental data itself is an important limiting consideration. In the case of DTA
radicals, only the BDTA« and TTTA-" have reliable experimental g tensor components.
We have calculated their g tensor components and they were found to be within
experimental accuracy (one part per thousand) . The computed and experimental g tensor
deviations from the value of the free electron, Ag;i (i = x,y,z), were found to be in the
range of 140 — 750 ppm.

Recently Bond et al. have managed to accurately determine the experimental g and A
components of a third radical, TDTA-. It is structurally related to TTTA- by
replacement of two N atoms by their isoelectronic C-H counterparts. The tensor
components were obtained by simulation of the EPR and ENDOR spectra at X and Q
band frequencies. The simulations took into account the subtle low field undershoot
effect common to this class of radicals. Bond et al. also factored in the fact that spatially
equivalent atoms within the molecule are not magnetically equivalent. The existence of
these reliable experimental values for this third radical presents a rare opportunity to
further accurately compare the computed and experimental g and A tensor components of
this class of radicals.

Here we show that the UBILYP and UPBEO HDF methods can also be used to compute
the g and A tensors of TDTA- to within a 330-900 ppm of their experimental values.
This good agreement continues the previous trend of understanding the EPR and ENDOR
spectra of DTA radicals which, in turn, help us comprehend their structure-bonding
relationships.

The g and A tensor components were calculated with the ORCA suite of programs using
the UHF, UB1ILYP and UPBEO methods . The computations were carried out on a
cluster of eight Linux computers using the message passing interface protocol, MPICH.

Two types of basis sets were used. The first is Barone’s EPR-II basis sets , and the
second is Dunning’s larger, augmented correlation-consistent triple zeta polarization
basis sets (aug-cc-pVTZ). Solvent effects were taken into account by surrounding the
molecules with a solvent cavity of the appropriate dielectric constant, €, in accordance
with the COSMO method.
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2.2 Electronic ground states

The planar TDTA-« radical has C,, symmetry and a °B; ground state. The unpaired
electron resides in a n-type one-electron singly occupied Kohn Sham orbital (SOMO),
shown in Fig. 1. It is anti-bonding with respect to the N2, S1 and S3 atoms of the 1,3,2-
dithiazolyl ring. The sulfur atoms are also anti-bonding with respect to the two thiopheno
ring C atoms. On the other hand, the two C4 and C8 atoms are nonbonding and have
very little net spin density.

In the liquid state, the radical’s EPR spectrum displays three-lines of equal intensity due
to the I(**N2) = 1 of the 1,3,2-dithiazolyl group .

2.3 Numerical calculation of the g tensor components

The TDTA-* experimental g tensor components were determined by simulation of the
X-band EPR and ENDOR spectra at 100 K. These values were also confirmed by
simulating the EPR taken at Q—band frequencies .

The calculated g tensor components using the UHF, UBILYP and UPBEO methods with
EPR-II and aug-cc-pVTZ basis sets are listed in Table 1. Computations were carried out
on the radical in the gas phase and with toluene or CD,Cl, as a solvent. At the bottom of
Table 1 is a row labeled Ag(ppm). It represents the difference between the experimental
and computed gas phase g tensor components, in parts per million, using the UBILYP,
UPBEO and the EPR-II basis sets.

In the absence of solvent effects, the UHF/ EPR—II calculations show that, relative to the
experimental g tensor, the g.« and g,, values are underestimated while the gy, is
overestimated. Table 1 also shows that the tetrahydrofuran or CD,Cl; solvents effects are
found to be minimal and insignificant. In addition, increasing the basis set size from the
EPR-II basis to the larger aug-cc-pVTZ set does not notably improve the situation.

When the UBILYP or UPBEO hybrid density functionals are used instead of the pure
UHF exchange, a significant improvement is observed. For example, the agreement of
the gas phase g,y and g,, computations with the experimental values improves by 1290
ppm and 2060 ppm respectively in going from UHF/EPR—II to UBILYP/EPR-II.
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Table 1. Experimental and Computed Total g tensors.

Zxx Zyy 27z <g> Zxx vy Lz <g>
Experimental 2.00170  2.00510 2.01260 2.00650 a
Gas Phase (Vacuum)
UHF
EPR-II 2.00161 2.00726  2.01021 2.00636 b
UBILYP UPBEO
EPR-II 2.00207 2.00597  2.01227 2.00676 2.00209  2.00600 2.01225 2.00678 b
UHF
AUG-cc-pVTZ  2.00155 2.00657  2.01004 2.00605 b
UBILYP UPBEO
AUG-cc-pVTZ  2.00204 2.00603  2.01236 2.00681 2.00210 2.00522 2.01145 2.00626
Tetrahydrofuran
UHF
EPR-II 2.00160 2.00727  2.01066 2.00651 b
UBILYP UPBEO
EPR-II 2.00207 2.00609  2.01281 2.00699 2.00209 2.00613 2.01280 2.00700 b
Methylene Chloride
UHF
EPR-II 2.00160 2.00728  2.01069 2.00652 b
UBILYP UPBEO
EPR-II 2.00207 2.00609  2.01284 2.00700 2.00214 2.00510 2.01191 2.00638 b
Ag(ppm) -370 -870 -330 -260 -390 -900 -350 -280 b

a Bond et al.. Obtained by simulating the EPR spectra of the frozen radical in methylene chloride at 100K.
b This article. Due to the C,y symmetry of the B radical, the total g tensor has no off-diagonal components.
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Table 1 shows that the influence of the tetrahydrofuran or methylene chloride solvents on the neutral
TDTA- g tensor components is very small. This was also found to be the case in our previous g
tensor calculations for the BDTA+ and TTTA- radicals.

When HDF methods are used, the g tensor components computed by the EPR-II basis sets are very
similar to those obtained using the larger aug-cc-pVTZ sets. This indicates that the EPR-II, basis
sets, like the aug-cc-pVTZ, have enough flexibility to properly describe the net electron spin
density, Z Pﬂ”fv‘ﬁ , required to compute the g tensor components. This is not surprising since the EPR-
y78%
IT basis sets were originally designed for the difficult task of accurately computing the nuclear
hyperfine A tensors. Therefore they properly express and balance the spin density in the core and
valence regions of doublet state radicals. Calculations using the EPR-II basis sets were
approximately 50 times faster than those employing the aug-cc-pVTZ sets. This offers a significant
advantage, especially when computations of larger DTA radicals are to be attempted in the future.
In the following discussions, the UB1LYP/EPR-II results will be used.

The accuracy of the experimental g tensor components is expected to be approximately 1 part per
thousand (ppt) because they are indirectly determined by simulation of randomly oriented samples at
low temperatures. The TDTA+ Ag(ppm) values, taken as the difference between the experimental g
tensor components and those calculated using UB1LYP/EPR-II, range from 330 ppm to 870 ppm.
Thus one may conclude that the calculated g tensor is within the limits of experimental accuracy.

When comparing the UBILYP and UPBEO methods, the maximum difference in Ag(ppm) is small
(30 ppm). It suggests that both HDF methods are quite accurate and yield similar results. This is
because both the UBILYP and UPBEO functionals are very similar and mix 25% of the HF
exchange with 75% of the density functional.

In conclusion, when compared to the UHF technique, the UBILYP and UPBEO HDF methods

improve agreement of g, and g,, with experiment. There is little difference whether the UBILYP or
UPBEO methods are used or whether the basis set is enlarged from EPR-II to aug-cc-pVTZ.

2.4 Analysis of the g tensor components
The g tensor components may be broken down into four main components
O = 0.0, +AQ™C 5 +AGR” +Ag" (2.62)

Their UB1LYP/EPR-II numerical values are given in Table 2 and all their symbols in Egs. 2.1-2.4,
have been previously defined. The first term is the scalar value of the free electron, g. = 2.002319
and the 6,; Kronecker delta function restricts its contribution to the diagonal terms of the total g
tensor. The relativistic mass correction to the kinetic energy is

Ag™M© = ZP“B< -V ¢V>, (2.63)
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where the spin S = 1/2 and a is the fine structure constant. The Ag"™® term decreases the diagonal g
tensor values by 2.4750x10™* ppm.

Unlike the first two terms on the right hand side of Eq. 1, the diamagnetic correction term,
Ag S, is a second rank Cartesian tensor.

1 a-f a_z Z:ff R
Agrs _ZS ZP %ZA: 2 ‘ﬁ_ﬁAr (rArO rA,rrO,s)(ov . (264)

Here the term in square brackets represents the effective spin orbit coupling interaction, &(A,i), of the
ith electron at the Ath nucleus. Z is its effective nuclear charge and . Table 2 indicates that the
one- electron contributions to Agy " AgnyC and Ag,,°C are positive while the corresponding two-
electron terms are smaller and negative. The net results are positive values that counteract the
corresponding Ag" contributions.

The orbital-Zeeman spin-orbit term, Ag, ~S°C is the largest contrlbutlng term to the deviation of the

g tensor from the free electron value. This second rank tensor, in the uncoupled representation, is
defined as:

0Z/S0C __ _L 1 (a+/3),0b (a—p),b0
AG = 2SZb:Eb_Eo {pq 2.5 <¢p‘€ ‘%>ZP <(Pp
Zp(a ﬁ)ob<¢p ZAlg(fA » ¢q>zP(a+ﬁ)bo< >}

Only the coupling of the *B; ground state with the excited A, states contributes to the Ag,,
components. There are two doubly occupied a, valence orbitals and seventeen empty ones that are
sufficiently close in energy to significantly influence the g, °“°“ components. The la; is a core
orbital while the 2a; orbital is out-of-plane m bonding that is delocalized over the S1,S3, C4, C5, C7
and C8 atoms. It has significant character from the thiophene ring. This, in conjunction with its
large energy difference compared to the SOMO, render its contributions to g to be rather small. In
spite of its being closer to the SOMO, the 3a, orbital is mainly carbon in character. Since the carbon
spin-orbit coupling constant is smaller than that of sulfur and nitrogen it increases gXXOZ/ S9C€ by a
relatively small amount. Since excitations from the SOMO to the seventeen a, virtual orbitals
counteract those from the filled 2a, and 3a, to the SOMO, the net result is a negative contribution to
g« In addition, Table 2 indicates that the Ag"™° and Ag,°C are almost equal in magnitude but
opposite in sign. Thus the negative AgXXOZ/ S0C s the deciding term and leads to a total gy, value that
is less than g..

géj(rA)ZA,v

?,)
(2.65)

0z/S0C
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Table 2: Individual One and Two Electron Contributions to the Total g Tensor Diagonal Components®

UBILYP UPBE(

RMC
Ag dr(ppm) Zxx A Eyy . g2z . Zxx . Lyy . g2z A
Total -2.4750x10° -2.4750x10° -2.4750x10° -2.4400x10" 2.4400x10™  -2.4400x10°
AgrsGC(ppm) xx . yy . gzz . Exx . Eyy . 8zz .
One-electron 3.2730x10° 3.8670x10° 3.0030x10° 3.2500x10 3.8430x10° 3.0010x10°
Two-electron  -8.0100x10”>  -9.5100x107 -7.3400x10°° -7.9600x107° 9.4500x10°  -7.3200x107
Total 2.4720x10™ 2.9160x10™ 2.2690x10™ 2.4540x10™ 2.8980x10%  2.2690x10™
AgrsOZ/SOC(ppm) Zxx A Eyy 3 g2z ) Zxx . Lyy 3 g2z )
One-electron  -6.4000x10" 5.7160x10° 1.2997x10° -6.2070x10" 5.7300x10° 1.2955x10°
Two-electron 3.8580x10%  -2.1121x107 -3.0242x107 3.8600x10™ 2.0978x10°  -3.0056x10
Total -2.5430x10™ 3.60400x107 9.9726x107 -2.3470x10™ 3.6322x107°  9.9490x107

total
grs gxx gyy gzz gxx gyy gzz

2.00207 2.00597 2.01227 2.00209 2.00600 2.01225

* Due to the C,, symmetry of the molecule, all off diagonal g tensor terms, gjj, are zero. Thus, only the diagonal elements are listed.
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Figure 2. Isosurfaces of the six doubly occupied 8b, - 13b, one-electron
Kohn-Sham molecular orbitals. The 13b, is the main contributor to the
g,, component via spin-orbit/orbital-Zeeman coupling. The isosurface
contour cutoff is 0.05 e/au’.

There are 58 a; orbitals that, upon excitation, will contribute to AgyyOZ/ S9C_ Nineteen are
doubly occupied and will increase AgyyOZ/ SOC when excited to the SOMO. In contrast,
excitation of the unpaired electron from the SOMO to the 39 virtual a; orbitals decreases
Agy,°“S°C. The sum of these numerous counteracting contributions leads to Ag,,°*5°¢
=3.60400x10”. Table 2 also shows that the one-electron contributions to gyyoz&%c are
positive and offset the corresponding two-electron contributions which are negative. The
net positive values of AgyyOZ/SOC and AgnyC, overcome the negative value of Ag" and

lead to a gy, component that is slightly larger than g..

The computed g, is 2.01227. By noting from Figure 1 that the SOMO is mainly S1(px),
N2(px) and S3(px) in character then the largest contributions to g,, are from the filled b,
orbitals with large S1 (py), N2 (py) and S3 (py) components. In addition, the excited B,
states that are close to the B; ground state will increase the g,, more than those that are
farther away. Figure 2 depicts the 8b; - 13b; one-electron Kohn-Sham orbitals. They are
all in-plane bonding and posses a node along the N2-S6 direction. From these spin
restricted one-electron orbitals one may qualitatively conclude that the 8b,, 9b, and 12b,
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are less important than the 10b,, 11b, and 13b; orbitals. The latter three orbitals are in-
plane m-bonding with signifcant S1, N2 and S3 character. Inspection of Fig. 2 also shows
that, in addition to being close to the SOMO, the 13b, orbital is predominantly S1 and S3
in character. The relatively large sulfur spin-orbit coupling of this orbital causes the
largest positive increase to Ag,,°*S°¢

2.5 Summary and conclusions

Lately we have demonstrated that the UBILYP and UPBEO HDF methods can accurately
reproduce the A tensor components of polycyclic DTA radicals. In contrast, only two g
tensors have been accurately calculated for these types of radicals (BDTA< and TTTA®).
Recently, a third radical, TDTA-, has been synthesized by Bond et al.. Its g and A
tensors were accurately and reliably determined by simulation of its EPR and ENDOR
spectra at X and Q band frequencies. The existence of these dependable experimental
tensors for TDTA- present an excellent opportunity to accurately compare the computed
and experimental g and A tensor components of yet a third DTA radical.

Here we show that the UBILYP and UPBEO functionals, in conjunction with Barone’s
EPR-II basis sets, can also be used to calculate the g tensors of TDTA« to within a 330-
900 ppm of their experimental values. This very good agreement continues the previous
trend and opens the field for further accurate and viable calculations of the spin
Hamiltonian tensors. They in turn should lead correct interpretations of the EPR and
ENDOR spectra of larger inorganic sulfur-nitrogen radicals.

The UBILYP and UPBEO HDFs, that include electron exchange and correlation,
improve these calculations over those carried out at the UHF level. On the other hand,
the solvent effects do not largely affect the calculated g tensor.

Finally, the isotropic hyperfine coupling constants and net spin densities at the TDTA-,

determined by the present computations, are also in very good agreement with the
experimental values and previous net spin density calculations.
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3.1 Example: The Calculation of the DPPH g tensor

The 2,2’-diphenyl-1-picrylhydrazyl (DPPHe¢) neutral free radical, shown in Fig.1, is
a stable radical, with an average g value of 2.0036. It has been commonly used as a
standard marker in electron paramagnetic resonance (EPR) spectroscopy in the range of 1
- 465GHz. It is also an important radical scavenger that has been used as a spin trap in

over 400 publications within the last three years.

Fig. 1a Orientation and atomic numbering of DPPHe. For

clarity, only the carbon skeletons and nitrogen atoms have been labelled.

It is important to understand the correlation between DPPH’s reactivity, structure,
bonding, spin Hamiltonian parameters and its environment. This may ideally be achieved
by correlating the observed magnetic properties and spin Hamiltonian parameters with
those calculated by a reliable computational method. A good agreement between theory
and experiment enables one to relate the radical’s electronic structure and geometry to its
bonding, properties and reactivity.

In the absence of rotational or vibrational averaging, DPPHe has C; symmetry and,
as a result, all it’s nuclei are magnetically inequivalent. However, electron nuclear
double resonance (ENDOR) studies by Dalal et al. indicate that although the pair of
picryl protons are inequivalent, the phenyl protons appear to be magnetically equivalent.
They suggested that the phenyl groups may rotate about their C-N, bonds and average out

their proton inequivalency. From these experimental results, it is clear that dynamic
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motions and rotational averaging must play an important role in influencing the magnetic
properties of this molecule. Consequently, our primary aim is to find to what extent the
EPR and ENDOR spectra of DPPH?- are influenced by solvent interactions, fluctuations
or restricted rotations. The main spin Hamiltonian parameters affecting the spectra are
the g and hyperfine (A) tensors. As a first step, we investigate how these factors
contribute to the magnitudes of the g tensor components. This is accomplished via
hybrid density functional (HDF) calculations.

The UBILYP and PBEO HDFs, which have the advantage of containing no
adjustable parameters, have been introduced. When used with moderate basis sets such as
EPR!II, they yield slightly more accurate results when compared to the B3LYP
functional.

During the last few years g tensor components have been computed using a
variety of techniques. Using the UBILYP HDF method and the EPR-II basis sets of
Barone, we found that there is little loss of accuracy as the radicals increase in size from
diatomics to aromatic ones such as 1,4-benzosemiquinone. This trend continues with
inorganic radicals that include nitrogen, sulfur and fluorine. These past results have
given us enough confidence to attempt the computation of the DPPHe g tensor. The
calculations are quite demanding since DPPHZe is a large molecule that has 41 atoms. In
addition it is floppy and environmental effects, such as solvent-solute interactions, may
influence its geometry and its g tensor components. Thus, thorough computations that
reproduce the experimental spectra, must include phenyl ring rotations and solvent
effects. These tensors, in conjunction with the total hyperfine A tensor components,
allow us to assess the effects of magnetic inequivalent DPPHe atoms on its EPR and
ENDOR spectra.

Since the geometry of DPPH?- in the gas phase and in various solvents is not
known, it had to be optimized in the gas phase. Once the optimized geometries were
obtained the g tensor components were computed using the UBILYP HDF method and
Barone’s double zeta EPR-II basis sets. The EPR-II bases properly express and balance

the spin density in the core and valence regions of doublet state radicals.
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The effects of solvents were investigated using Tomasi’s polarized continuum
(PCM) and COSMO methods, which place the radical in a solvent cavity. The cavity

itself is constructed from a series of interlocking spheres.

3.2 Electronic Ground State and Relevant Bond Orders

The DPPH- radical (Fig. 1a) has one unpaired electron, C; symmetry and a X°A,
ground state. While the unpaired electron resides mainly on the N;-N; moiety, it is
nevertheless delocalized over the entire molecule. The Lowdin bond orders between the
N, and the phenyl rings are calculated to be 1.0934 and 1.0466, suggesting that they are
single bonds. Thus, in the absence any other steric influence, the phenyl rings may rotate
freely. In contrast, N; - picryl ring bond has an order of =1.5. It is a partial double bond
rendering the picryl ring free rotation unlikely. The space filling model in Fig. 1(b)
shows that although rotation of the phenyl rings is possible, there will be some steric
hindrance. The effect of such restricted rotations will be discussed in section 3.4 below.
The order of the N-N; bond is =1.45 indicating that there is a delocalization along the

N;-N;-C;3 bonds where the unpaired electron mainly resides.

Fig. 1b Another view of DPPH-.using a space-filling model

to illustrate the radical’s non-planarity and steric crowding.
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3.3 Numerical calculation of the g tensor components.

The experimental and calculated g tensor components using the UBILYP and
UPBEO methods with the EPR-II basis set are listed in Table 1. Computations were
carried out on the radical in the gas phase and with a variety of solvents. The geometry
used in the calculations corresponds to the minimum energy configuration where the
dihedral angle, formed between the Ny, N,, C7 and Cg atoms, in Fig. 1a, is 35°. The row
labeled Ag(ppm), at the bottom of Table 1, represents the difference between the latest
experimental results and the computed gas phase g tensor components in parts per million

using the UB1LYP hybrid density functional.

Table 1. Experimental and Computed Total g tensors

g1 g2 £33 <g> Ref.

Experimental 2.00390 2.00390 2.00280  2.00350
2.00400 2.00380 2.00310  2.00360
2.00390 2.00370 2.00320  2.00360
2.00392 2.00392 2.00295 2.00360
2.00435 2.00367 2.00245 2.00349

Gas Phase UBILYP 2.004601 2.003648 2.002331 2.003526 a
PCM CCl4 2.00445 2.00381 2.00244 2.00357 a
PCM Benzene 2.00445 2.00381 2.00244 2.00357 a
PCM Ethanol 2.00442 2.00380 2.00245 2.00356 @
PCM Methanol 2.00442 2.00380 2.00245 2.00356 @
PCM Acetonitrile 2.00442 2.00380 2.00245 2.00356 @
PCM DMSO 2.00442 2.00380 2.00245 2.00356 @

COSMO Mineral Oil UBILYP 2004567 2.003644 2.002326 2.003512

M)

COSMO Mineral Oil UPBEO  2.004553 2.003633 2.002337 2.003507 a

Ag(ppm) 251 22 119 36

a This work
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These particular experimental results were chosen as a benchmark because they are
obtained from high frequency spectra (220 GHz) where the g tensor components suffer
minimally from complicating factors such as spin exchange narrowing and dipolar

broadening.

Table 1 shows that the influence of the solvents on the neutral DPPHe g tensor
components is very small. Computations done using the PCM method show the effect
due to ethanol, methanol, acetonitrile and DMSO are essentially the same. However, in
the case of non-polar solvents such as CCly and benzene, only a marginal increase in the
g11 component is observed. Table 1 also indicates that when the COSMO method was
employed with mineral oil as a solvent, similar results were obtained.

The experimental g tensor components are usually determined from the broad EPR
peaks of randomly oriented microcrystals, powdered or glassy samples. More accurate
determination of these parameters is obtained from the simulation of the experimental
EPR spectrum. Even with sophisticated simulation techniques, the accuracy of the
experimental g tensor components is expected to be approximately 1 part per thousand
(ppt). The difference between the latest experimental g tensor components and those
calculated using gas phase UBILYP/EPR-II [Ag(ppm), Table 1] range from 22 ppm to
251 ppm. These values allow us to safely conclude that the calculated g tensor is within
the limits of experimental accuracy. The comparison of the UBILYP and UPBEO
methods, given in the last two rows of Table 1, shows that the differences between the
two techniques are only 14,11,11 and Sppm for g, g2, g33 and <g>, respectively. The
accuracy and similarity of the results from the UBILYP and UPBEO methods is
understandable because the functionals are very similar and mix 25% of the HF exchange

with 75% of the density functional.

3.4 Analysis of the DPPH g tensor components

From Section 2, the total g tensor may be expressed as the sum of four main components

RMC GC 0z /S0C
9, =99, +A076,, +AgQ,, +Ag, ", (3.66)

e~ uv
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where all their symbols have been previously defined. The Kronecker delta function,

o, constrains the contribution of the free electron value, g. = 2.002319, to the diagonal

uv

components of the total g tensor. The second term is the reduced mass correction to the

kinetic energy

A (a gejzpaﬁ<

where o term in parenthesis is the fine structure constant, S is the total ground state spin.

stiz
27

v, > (3.67)

For the UBILYP gas phase results, the Ag"™ term reduces the diagonal g tensor values
by 2.363x10™* ppm.

In contrast to the previous term, the gauge correction term, Ag®°, is a second rank

uv 2

Cartesian tensor

. qu> (3.68)

The term & ( rA) is the effective spin orbit coupling interaction of the ith electron at

the Ath nucleus. The Ag 1GC AgzzGC and Ag33GC terms, which are the diagonalized form

of the Agif , are listed in Table 2. Their one-electron contributions are positive while the

corresponding two-electron terms are smaller and negative. The total results are positive
values that counteract the corresponding Ag*™° contributions
The largest contributing term to the deviation of the g tensor from the free electron value

0z/socC

is the orbital-Zeeman spin-orbit term Ag ">~ . The uncoupled representation of this

second rank tensor is:

1 1
AqOZ/soc — _ 1 %
v 25 Zb: E, - E,

(S o),
Pq

V) (3.69)
P <wp V) 2P (v,

e kvl

;é(ﬂ)m

ZAlf(FA)ﬁA,H
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Table 2: Individual One and Two Electron Contributions
to the Diagonalized Total g Tensor Components

Ag™(ppm)

Total

Ag““(ppm)

One-electron

Two-electron

Total

A gOZ/SOC

Two-electron

Total

total

(ppm)

One-electron

UBILYP Gas Phase Minimum

£11
-2.363x10™

211
2.612x10™
-9.580x107°
1.654x10™

211
3.783x10°
-1.431x10°
2.352x10°

gi1
2.00460

g2
-2.363x10™

222
2.601x10™
-9.380x107
1.664x10™

g2
2.233x107
-8.351x10™
1.398x10°

g2
2.00365

£33
-2.363x10™

£33
2.260x10™
-8.200x10°
1.440x10™

£33

4.250x107
6.100x107
1.035x10™

£33
2.00233

UBILYP Gas Phase Averaged

£11
-2.367x10™

211

2.604x10™
9.547x10°
1.649x10™

211
3.818x10°
-1.446x10°
2.372x10°

gi1
2.00462

g2
-2.367x10™

222

2.594x10™
9.348x10°
1.660x10™

£22
2.241x107
-8.372x10™
1.404x10°

g2
2.00365

£33
-2.367x10™

233

2.244x10™
8.132x10°
1.143x10™

£33

2.899x10°
6.381x10°
9.280x10°

£33
2.00232
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The terms P{**”®and P{~”* are the total charge and net spin transition densities

between the states 0 and b respectively. Equation 34 of reference is the fully coupled

0Z50C and was used to numerically calculate its tensor components.

form of Ag;s
However, Eq.(3.69) is slightly simpler, yet also suitable to be used in the discussion
below.

In molecules with high symmetry, only certain excitations that contribute to

0z/S0C

Agys are allowed. The product of the irreducible representations appearing in the

numerator of Eq.(3.69), <l//p ‘E ﬂ‘lﬂq > , must be equal to the totally symmetric

representation of the molecular point group. Alternatively,

Ty, )®T(£,)®T(y,)=T, (3.70)

This significantly reduces the number of allowed excitations and, in certain cases, full

analysis of the contributions to AgrSOZ/ S0Cis possible. However DPPHe* has a C,
molecular point group, F(l//p) = F(f ﬂ) = F(l//q ) =TI",, and all transitions are allowed.

This results in a large number of excitations and it is impossible to practically analyze
and comment on all their contributions to the nine tensor components. One is left with no
alternative but to rely on the pure numerical results given in Table 2.

It is obvious from the excellent agreement between theory and experiment (within
251 ppm), in Tables 1 and 2, that the coupled perturbed Kohn Sham method, can reliably

reproduce the g tensor components of large molecules such as DPPHe.

RMC

Examination of the data in Table 2 reveals that the Ag™ " values are negative, while

the Ag® and Ag®“S°C values are positive. For the Ag;; and Agy, components, Ag°C and

RM!
A gOZ/SOC C

are much larger than the Ag" " value, and increase the Ag; ol and Agzztml

values significantly. However, in the case of Agss, Ag"™C = Ag%C + Ag®*"°C leading to

total

Ags3 " values that are very close to that of the free electron.
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3.5 Effects of restricted rotations on the g tensor values

It is well known that the g tensor values are dependant on the geometry of the
molecule. As discussed previously, the phenyl C and N, single bonds will allow their
rings to rotate. However these phenyl ring rotations, as seen from Fig. 1(b), will be
restricted due to steric hindrance. To assess the effect of these restricted rotations on the
values of the g tensor, a series of computations were carried out. The dihedral angle

formed between the Ny, N,, C; and Cs atoms (@,,., ) was fixed at 0° and the remainder of

the molecule was then allowed to geometry optimize to obtain the minimum energy
conformation. This was followed by calculation of the g tensor components, and the total

energy, Etor( ¢, ) was noted. The dihedral angle, ¢,,,, , was then incremented by 5°

and the entire process was repeated again. This continued for a total of 36 computations

where ¢,,,, ranged between 0° and 175°. The probability that the molecule exists in a
certain conformation with any specific dihedral angle, ¢, , is, according to the Maxwell-

Boltzman distribution, given by:

(_ Eror (@125) j

P
P(Pia75) = 155 E . (3.71)
Z exp (_ to1 (Piazs) J
$275=0 kT
From this probability, the averaged values of the diagonalized g tensor components,
175
<gii> = Z p(¢1278)'gii (¢1278)’ (3.72)

Pr73=0

are then determined.

Figure 2 is a composite diagram depicting the g tensor and probabilities of
occupation. The x-axis represents the dihedral angle, ¢,,,, . The left hand y-axis represents
the principal g tensor values and the solid lines are the g;;, 222, and g33 as a function of
angle. From this figure, it is seen that the gs3 tensor component is the most sensitive to
angle variations. Superimposed on the g tensor curves is the probability plot given by

Eq. (3.71). It’s values are given in the right hand side y-axis. The averaged values,
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<gi1>, <g»>, <g33>, determined from Eq. (3.72), where T=303.18K, are represented by

the three horizontal lines in the figure.

2.005

2.0045

2004

alue

2.0035

Probability

gv

2003

2.0025

\l\

Ei
1002

0 0 40 60 80 100 120 140 160
¢ 12 in Degrees

Fig. 2. Plot of the g tensor principal axes, g;;, 2> and g33, as

a function of the phenyl ring rotation. Superimposed on the
principal values is the probability that DPPHe- exists in a given
configuration. Finally the horizontal lines represent the
averaged values, calculated from Eq. (3.72).

Table 3 compares the experimental, gas phase and averaged gas phase results. It
also lists the Ag ppm values for the averaged and unaveraged calculations. It is quite clear
that the effect of restricted rotational averaging is well within the experimental accuracy
of 1ppt. In addition the largest difference between theory and experiment for the
unaveraged values is 251 ppm for the g;; tensor component. Upon averaging, this

already excellent agreement further improves to 185 ppm.

Table 3. Effect of Weighted Averaging on the Computed Total g tensors

g1 €2 €33 <g>
Experimental 2.00435 2.00367 2.00245 2.00349
Gas Phase UBILYP 2.004601 2.003648 2.002331 2.003526
Ag(ppm) 251 22 119 36

Averaged Gas Phase UBILYP 2004620 2.003653 2.002318 2.003530
Averaged Ag(ppm) 185 17 132 40
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3.6 Summary

The g tensor components were computed, using UBILYP and UPBEO functionals,
in the gas phase and in various solvents. Both functionals gave very similar results. All
the calculated g tensors, whether in the gas phase, polar or nonpolar solvents, are in
excellent agreement with experiment. This opens the field for further accurate and viable
calculations of the spin Hamiltonian tensors for large organic radicals comparable to
DPPH- (41 atoms). They, in turn, should help in the interpretation of the EPR and
ENDOR spectra of this important class of molecules.

The g tensors were also investigated as the DPPH phenyl groups were rotated
relative to the picryl ring. Their averaged principal values, according to the Maxwell-
Boltzman distribution, at 303 K, marginally improve the already excellent agreement.

Solvent effects, whether polar or non-polar, are very well reproduced but quite
small. On the other hand the nuclear hyperfine tensors are quite sensitive to the
surrounding environment and internal rotations. Thus one may conclude that the EPR
and ENDOR spectra will be predominantly influenced by the solvents and rotations via
their nuclear A tensors. The results of such a study are a subject of a manuscript in

preparation
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Appendix 1:

A Concise Introduction to Hybrid Density Functional Theory

Historical Perspective of Quantum Mechanical Calculations.
Quantum mechanical calculations, that predict total energies, electronic structure

and molecular properties, may be classified into three categories. The first are ab initio
calculations. They are "first principles" computations that are independent of any
empirical parameters. The second are density functional theory (DFT) computations
that are very similar in their methodology to ab initio techniques. However, DFT
methods require a density functional that describes how the exchange and correlation
energies of a molecule depend on the electron density. Furthermore, this density
functional has additional parameters tailored to give optimal molecular energies.
Depending on the choice of the density functional and its parameters it may yield results
that are even better than high level ab initio computations. Ab initio and DFT methods
give accurate electronic structures and molecular properties. However, they are
expensive and limited to relatively small molecules.

Semi-empirical methods constitute the third class of computations. They make
use of different parameters in their energy Hamiltonian for every atom with a particular
atomic number. For example carbon and nitrogen have different parameters but sp2 and
sp3 hybridized carbons would have the same parameters.

Although the approximations used in semi-empirical methods are more drastic
than those made in ab initio and DFT techniques, this is offset by the accuracy of the
experimental semi-empirical parameters used. In some cases, semi-empirical methods
may be more accurate than low level ab initio calculations. In general, semi-empirical
methods are more appropriate in dealing with large molecules where trends are important

and numerical accuracy of the calculations is not paramount.

The Restricted Form of the Hartree-Fock Equations
The starting point of all quantum mechanical computations is to find the

eigenvalues, E, and eigenfunctions, ¥ , of the wave equation

H(x,y,zict) ¥, (X, y,z,ict)=E¥ , (X,V,z,ict) (A.73)
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Here the (x,y,z,ict) notation means that the relativistic Hamiltonian, H , is a function of
the four component space-time coordinates X, y, z, and ict for every particle of the
system. When dealing with molecules containing light atoms, this relativistic Dirac
equation may be approximated by the conventional three component Schrodinger
Equation

H(x,y,z)¥(x,y,2)=E¥(x,y,2) (A.74)

For convenience the functionality (x,y,z) is omitted and (A.74) is rewritten as

HY =EY (A.75)
In the above three equations, the H operator represents the different types of energy
(kinetic, nuclear-nuclear, electron-nuclear, electron-electron.....etc) of all particles of the
chemical system under consideration. The eigenfunctions, E,, are the resulting total
energy of the system in a particular quantum state, n. The eigenvectors, ‘¥, are the
multi-particle wave function of the system.

To define the H operator one needs to know the atomic numbers and spatial
coordinates of all the nuclei and electrons. In addition, the total charge, total spin (S),
spin multiplicity (2S+1), and spin state (Ms) must also be defined.

The nuclear and electronic components of the Schrodinger equation, may be
separated by invoking the Born-Oppenheimer approximation. The electronic component
takes the form

Hee ¥ gtee = Egec ¥

elec ~ elec elec ~ elec

(A.76)

In this case, Hejec 1s the Hamiltonian of all electron interactions and ¥ is the

elec
corresponding electronic "many body" wave function. To solve this equation one
assumes that the all the electrons are independent of one another and consequently their

energies are additive. Thus the Hejec becomes the sum of "one electron" effective

Hamiltonians, H"
N
Helec = Z H ieff H (A77)
i

where N is the number of electrons. Since electrons are identical Fermions then

H,.. = NH", (A.78)

elec

and the Schrodinger equation in (A.76) is reduced to
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H e lr//elec = ‘9elecWeIec (A79)

and can be solved numerically. The lower case "one electron”" eigenfunctions, .,
are known as "one-electron" molecular orbitals and the resulting eigenvalues, ¢,, are

called the orbital energies. The total probability of finding an electron in space is related

to a specific quantized molecular orbital, y;, via the relation

H_f;yf (X,,2)w; (X, y,z)dxdydz = ”‘//i (XY, z)‘zdr =1 (A.80)

The electrons of the system in its ground state populate the molecular orbitals of
lowest energies first. A maximum of two electrons can occupy every orbital. When the
number of electrons is even, in most cases, each molecular orbital contains either two
electrons or is empty. This leads to a closed shell system. When the number of electrons
is odd then at least one orbital must be singly occupied. The total electronic spin is S=1/2
and the corresponding spin multiplicity is 2S+1 = 2 or a doublet state. This is the
situation for the free radicals studied here.

The most convenient way to solve the eigenvalue problem of (A.79) is to

represent /.. as an expansion of known functions centered around the nuclei. These

functions are known as atomic orbitals, ¢ , and thus
!//i :chiq)v (A81)
where the summation runs over the number of nuclei. Therefore (A.79) becomes

H* > C,0, = £ 2, Cu, (A.82)

and by multiplying from the left by ¢, and rearranging one obtains

YCifoH pdr=5,.> C[p,0,d (A.83)
This last equation takes the form
Y CHN =¢,.>.C,S,,. (A.84)
or
H*"C=¢__SC. (A.85)

In (A.85) the overlap integral matrix elements, S, , are given by
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S, = [ 00,07 (A.86)
and are the overlap between atomic orbitals situated on the p and v nuclei. If there is no

overlap between these nuclei then S,, =0. On the other hand, if the overlap is complete

then S, =1. Hence the S matrix is positive and definite. Similarly Hffi is

H = j o, H" p,dz. (A.87)
The matrix Schrodinger equation of (A.85) is a compound eigenvalue problem
because it contains two matrix operators H™ and S. Since S is a positive definite
symmetric matrix, it can first be diagonalized by a similarity transformation to yield the
diagonal matrix s. The s is then easily calculated taking the inverse square root of its
diagonal elements ;. The non-diagonal form, S, is then obtained by the reverse
similarity transformation and is used to diagonalize the Hamiltonian in Eq.(A.85). The

end result, that yields the energy, is

(s%c)T (s7ms>)(sic)= (A.88)
Since electrons obey Fermi-Dirac statistics, their wave functions should be
antisymmetric when a pair of electrons are exchanged in space. To fulfill this condition,
Slater suggested that the multi-electron wave functions (spin orbitals), which written as a

product of a spin part, o = «, #, and spatial component, y;,, must be expressed as

determinants. For example the N electron wave function takes the normalized (spin

restricted) form,

yvi(Da wv2a wy,Bea - y(N)a
yiB wyiB yiF - yi(N)B
v.(Da  v,Qa v,B)a - y,(N)a

1
’2,..‘.N —_— A.89
N i T AAE Y JAESY SRS I

ynB @ yyQBB oy (NS

To properly apply the independent Hamiltonian approximation, all the

Hamiltonian operators must be a function of a single electron or "one electron" operators.
In general the electronic Hamiltonian operator for N electrons and M nuclei, in atomic

units, is
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Helec Hkm + HeN + Hee
1 N M NN (A.90)
=2V D
i=l1 i=1 A=1 YA i=l j>i Tjj

The first term is the sum of the kinetic energies of the N electrons while the second term
is the sum of the Coulomb attraction between all N electrons with M nuclei. They are the
sum of a series of one electron operators. The last operator in Eq.(A.90) represents the
electron-electron repulsions. Every one of its terms depends on the distance between the
electrons 1 and j. It is a sum of "two electron" operators and causes the electrons to be
dependent on one another. It impedes us from applying Egs. (A.77)- (A.88) that solve the
one-electron Schrodinger equation.

To overcome this problem, we make use of the Hartree-Fock approximation
where He. is replaced by a sum of N operators. Each operator represents the energy of
one-electron due to the average effects of the remaining N-1 electrons. This modified
Hejec Operator is now called the Fock operator, F . According to Roothan, we may now
proceed to solve the Schrodinger equation starting from an equation equivalent to Eq.
(A.85).

FC=¢__SC. (A.91)

elec

Where the Fock matrix elements, F,, are equivalent to those of Eq.(A.87) and take the

form

occup

=_J.¢/4V2¢vdr Zj.q)ﬂ_(/)‘/df—F z ZC”' vi

A,o=1 i=1

1 (A.92)
x I(o,,(r)cov(r)r—%(S)%(S)dfrdfs —I(/)ﬂ(r)%(r)r—cov(S)%(S)dfrdfs}

rs

When the two electron integrals, involving the electrons r and s, are abbreviated using the

"chemist's notation" we obtain

occup

F. :;j(pﬂvz%df j(p —¢Vdr+ Z > c.C., [(Wma)—%(y/um)} (A.93)

A,o=1 i=1
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The ( ,uv|ﬂ,0') two electron integrals in Eq. (A.93) are the Coulomb repulsion between

the electron clouds of the two electrons. The exchange integrals ( ,u/1|VG) are a direct

result of using the wave functions in the form of Slater determinants.

The F,, matrix elements depend on the C ;and C,; coefficients. Thus to generate
the eigenvalue problem in Eq. (A.91) an initial guess of the C;and C, coefficients (wave

function) is done. Eq. (A.91) is then solved in a fashion identical to that going from Eq.

(A.85) to (A.88). The yields a set of eigenvalues or molecular orbital energies, ¢,, and
the corresponding molecular orbitals with new C; and C; coefficients. These

coefficients are used once more to determine a new Fock matrix, F,, , which is used to

construct a new eigenvalue equation similar to that of (A.92). The process is repeated
until the difference between the new total energy of the molecule and the one from the
previous iteration is less than a certain defined value. This iterative process is known as
the Self-Consistent-Field (SCF) procedure. Another conversion criterion for stopping the

SCF procedure is that the electronic density,

occup

PyV = Zl Cinvi (A94)

from one iteration to the next is less than a certain defined value.

The Unrestricted Form of the Hartree-Fock Equations

The previous description has assumed that the spatial components of the ith
electron, i, , of the y, and w,f spin orbitals are the same. This is known as the spin
restricted Hartree-Fock (RHF) formalism. However, to obtain the correct spin density at
a given point in space or compute the isotropic hyperfine coupling constants, a spin
unrestricted formalism (UHF) must be used. In a spin unrestricted wave function, the

spatial components of w,a and y,f are not necessarily the same. Thus one may express

themas y a and w/p.

Pople and Nesbet have derived the unrestricted Hartree-Fock equations. As a

result, the wave functions come in pairs as:
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v =2 Clo, (A.95)
for the & spin and

v/'=> Clo, (A.96)

for the fspin. The corresponding Fock matrices take the form

N 1
Fo=H + > [Pjo ( ,uv|/10')—5 P ( ,u/1|v0')} (A.97)
A,o=1
and
F/=H’ + i [Pjo ( ,uv|/10')—% P’ ( ,wl|vo-)} (A.98)
A,o=1

a ﬂ . .
Here H/ and H/ are the one-electron operators for the « and f spins respectively. The

densities in the previous two eqautions are defined as

occup occup

Pl =P%+P/ => CiCi+> CiC/ (A.99)
i=1 i=1

uv i vi

At this stage it is worth noting that the difference between Py and va at a certain

nucleus is proportional to the isotropic hyperfine coupling constant, a'*°, of that nucleus.

It is very important to realize that F and Ff‘, are coupled to one another because they

are functions of the total density, PJV , in Egs. (A.97) and (A.98).

This procedure ultimately leads to two coupled Hartree-Fock eigenvalue

equations similar to Eq. (A.91). They are:
F'C"=¢] . SC" (A.100)

elec

and

FPCce=¢P_SC’. (A.101)
Finally these two equations are solved by the above mentioned SCF procedure to yield
the molecular orbitals and their energies. Once this is accomplished, the total energy and

any other molecular property may then be computed.
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2. The Basic Principles of Hybrid Density Functional
Techniques

Hybrid density functional (HDF) computations have become extremely popular in
the last few years. They are now the preferred form of routine quantum mechanical
calculations in most laboratories. The methods are popular and yield results that are very
accurate.

As presented in the previous section, during the procedure of an electronic
structure quantum mechanical computation one attempts to find the eigenvalues, Ecjec,

and eigenvectors, v, , of the non-relativistic Schrodinger equation

Helec\Pelec = Eelec\PeleC (AIOZ)
The electron density at a particular point in space, r;, therefore takes the form
2
P(n)=ﬂ‘f'e|ec(r1arz’r3 ....... ry )| drdr,......dr, (A.103)

The integration over the variables dr, ,drs...dry in Eq. (A.103) simplifies the expression

for the electron density since it becomes only a function of r;. As a result, molecular

quantum mechanical computations may be greatly simplified if p( I’l) can be used
instead of ¥ .. (1;,1,, Ts.......ry ). Hohenberg and Kohn proposed that the energy, Ecicc,
depends only on p(r,) and E may be written as:

E=E[p]. (A.104)

However this dependency is a complicated unknown function of the electron density
(called a functional).

Later Kohn and Sham formulated a procedure for solving the Schrédinger
equation using Eq.(A.104). The resulting equations are very similar to those used in the
Hartree-Fock procedure. The very close similarity between these equations made it
possible to use the Hartree-Fock computer codes, developed over the years, to perform
density functional calculations without too many changes.

Just as in the case of Hartree-Fock theory, there exists a corresponding
"restricted" version of the Roothan equations leading to restricted density functional

methods. Similarly there are "unrestricted" density functional techniques that solve
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equations equivalent to the those of Pople and Nesbet. A discussion of the more general
unrestricted form of density functional theory will be given below.
In a fashion similar to Hartree-Fock theory, basis functions are introduced and the

corresponding wavefunctions, known as the Kohn-Sham orbitals, are [2]

ZCV.(A (A.105)

for the a spin and

ZCM (A.106)

for the B spin. From the coefficients of Egs. (A.105) and (A.106) the corresponding spin

density matrices may be obtained

occup

Z CiCi=p (A.107)

and

occup
BCh —
Z CiCl = (A.108)
The total electron density is simply the sum of Egs. (A.107) and (A.108).
T _ peo p
P, =P, +P.. (A.109)
The main difference between the Kohn Sham orbitals in Egs. (A.105) and (A.106) and
the Hartree-Fock orbitals is that they are solutions to the Kohn-Sham equations, which in
principle, have an exact electron density leading to exact total energies [2].
From the Pople-Nesbet equations, of the previous section where the pvth Fock

matrix elements of the a and 3 spins are:

Fo=He, + 2 {PL (uv]ac)- P (uAlvo)) (A.110)
Ao
and
F/=H/ +Z{PT (uv|io)-PL (uilvo)) (A.111)

The Kohn-Sham equations leave the Coulomb energy terms, P, ( ,uv|/10') ,

unchanged but replace the exchange energy terms, P’ ( ,u/1|v0') , by the exchange

correlations energy functionals, F*°, to give [2]

B-46



Fo=Hg +Y PL(uv|ic)+F3“ (A.112)
Ao
and

v v

Fo=H. +> Pl (uv|ic)+F)’ (A.113)
Ao

These equations are solved, by the self-consistent-field (SCF) procedure in exactly the
same way as the Pople-Nesbet equations. The resulting energy, where Exc is the
exchange-correlation energy becomes:
1
E =ZPWHW+EZZ PP, (#v]|ic)+E, (A.114)
uv wv Ao
The Exc and F*€ are related to one another via the exchange-correlation energy density

per unit volume, f. It is a function of both a and B spin electron densities. In fact

E,c =jf(p“,p/’)dr, (A.115)
a B
o =] [%J@@dr (A.116)

and

a B
Frer = J[af(p—;p)}ﬂ(ov dr (A.117)

op

From the above treatment it is seen that the Kohn-Sham procedure avoids the complexity
of post Hartree-Fock procedures such as configuration interaction. The correlation
energy is obtained from an effective one-electron exchange-correlation term given in Egs.
(A.116) and (A.117).

Historically the first exchange energy functional was proposed by Slater at MIT
and was based on the model of a uniform homogenous electron gas. It did not contain

any electron-electron correlation energy terms [3]

o) = 2a 2] () <] A1
leading to
F XCe :—30{1)%](,;&)%(,; o dr. (A.119)
m 4z mry
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and

s _ 3,3 /j( Y o0, d A.120
P yy P") ¢ dr. (A.120)

This is known as the local spin density (LSD) approximation.

While Egs. (A.119) - (A.120) represent the exchange in a simple analytic form,
there is no known simple form for the uniform electron gas correlation energy. LSD
functionals that include electron-electron correlation terms are based on numerical Monte
Carlo simulations of the homogeneous electron gas such as those obtained by Ceperly,
Alder, Perdew and Zunger [4]. These numerical results are then fit to formulae which
are, in turn, added as extra terms in Eqs.(A.119) - (A.120) as has been done by Vosko,
Wilk and Nussair [5].

In reality molecular electron densities are higher near a nucleus and lower in the
interatomic regions. They asymptotically go to zero at infinite distances. This density
change implies that it has a gradient. Improved functionals that take this fact into account

are called generalized gradient functionals [6].

of “ B of a B of a’ B
FHXVC"‘ I{%%% +{2%Vp“ +MVpﬂ]-V(gpﬂgov)}dr.(A.lZl)

aa af

In the last equation V is the gradient operator and y; = Vp'-Vp'. As similar equation

exists for the 3 spin.

Hybrid Density Functionals

If a percentage of the original Hartree-Fock exchange term is included in Eq.
(A.121) better agreement between theory and experiment is obtained. This modified
functional is known as a hybrid density functional (HDF). The most popular HDF is the
B3LYP functional. This functional's exchange component consists of a 20% Hartree-
Fock exchange term, an 8% Slater exchange term [3], given by Egs. (A.119) - (A.120)
and a 72% Becke-88 gradient exchange term [7] that takes the form

YA 4 4,
E. = —%a(%) j[(pa ) +(pﬂ)qg(x)dr. (A.122)
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with

YA 2
g(x):l%(%ﬁj bx - : (A.123)
{1+6bx3(3) sinh(x)}

2\ 4r

and b =0.0042. The correlation component consists of 19% Vosko-Wilk-Nussair
functional [61] and the rest is the Lee-Yang-Parr functional [8].

The percentages in the B3LYP functional were determined empirically by
comparing the 42 ionization potentials, 56 atomization energies, 10 atomic energies and 8
proton affinities of a standard set of molecules known as the G1 set. HDF codes are now
available commercially such as Gaussian 03. In summary the B3LYP functional may be
written in the condensed form as:

Exc™"""=0.08Ex"" + 0.2Ex"™" + 0.72 Ex™*** + 0.19Ec"™"™ + 0.8 1Ec""".

Purdue, Ernzerhof and Burke [9], using Gorling-Levy perturbation theory [10]
suggested that the empirical exchange coefficients be replaced by a ratio of 1/4. Adamo
and Barone [11] have implemented this non-empirical functional which takes the form

ExcPYP= 0.75(ExMSP + Ex®) + 0.25E T + EHYP,
It is found to give superior results when compared to the B3LYP functional and has been
used in our laboratories to compute the electronic structure, optimal geometries and

hyperfine coupling constants of a variety of open shell free radicals.

B-49



References
[1] P. Hohenberg and W. Kohn, Physical Review B, 136, (1964) B864.

[2] W. Kohn and L. J. Sham, Physical Review , 140, (1965) A1133.

[3] J. C. Slater, Quantum Theory of Molecules and Solids, Vol 4: The Self Consistent
Field Theory for Moles and Solids (McGraw Hill, New York, 1974).

[4] J. P. Perdew and A. Zunger, Phys. Rev. B, 23, (1981) 5048.

[5] S. H. Vosko, L. Wilk and M. Nussair, Can. J. Phys. 58, (1980) 1200.

[6,7] A.D. Becke, Phys. Rev. A, 38, (1988) 3098.

[8] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 37, (1988) 785.

[9] J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, (1996) 9982.

[10] A. Gorling and M. Levy, Phys. Rev. B, 47, (1993) 13105.

[11] C. Adamo, V. Barone, Chem. Phys. Lett. 274 (1997) 242.

B-50



Introduction to Calculations of g and A Values for
Transition Metal Complexes

48th Rocky Mountain Conference on Analytical Chemistry
EPR Workshop: Computation of EPR Parameters and Spectra
July 23, 2006

(]

-

Sarah C. Larsen -
Department of Chemistry i'
University of lowa F
.

L

REERa@3 A



Motivation for Quantum Chemical Calculations
from an Experimentalist’s Perspective

EPR Spectrum of Hydrated VO?2*- ZSM-5

To obtain the EPR parameters, the experimental
EPR spectra are fitted using a least squares
fitting routine. The fits are quite good as can be
seen from this example of hydrated VO2*- ZSM-
5.1

Experimental values from fitted spectrum?:
0,=1.933, g,=1.997

| L
A~549 MHz A =218 MHz
B) Fit
From the literature? for VO(H,0).*2:
0,=1.933, g,=1.9/8

| L
A =547 MHz A =212 MHz

Good agreement between EPR parameters
V4t dl: S=1/2. 1=7/2 for model complex VO(H,0).* and zeolite

complex.
P T1LELLE
C-2
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Obtaining Structural Interpretations of Spectral Changes

Changes are observed in the EPR
spectra of the zeolite complexes
when the sample is dehydrated or
ammonia is adsorbed.

A) Hydrated

How can we interpret these EPR
spectral changes (in g and A
values) in terms of structural
changes in the vanadium

B) Dehydrated

complexes in the zeolites? ]
C) After Ammonia:l . .
Adsorption - For a protein complex, how can we m
use EPR experimental data to r
determine the structure at the
active site?
-
=

BEAROO O n
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Correlation Plot of Experimental

600 ——

580

560

540

A (MHz)

500

480 |

1920 1925 1930 1935 1940 1.945 1.950

These systematic trends in g, and A, have been defined previously in the
literature through model complex studies.*?

Values

520

- O

Hydrated (solid)

Dehydrated (open)

Ammonia
O v
U] <>A

9
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Spectral Simulations
g, A

Experimental EPR Spectrum

Quantum Calculations
g, A

Electronic and Geometric Structure

i)

(o)
)
G)
\%
)
o
(H)
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DFT Calculations of Transition Metal g and A
Values
Getting Started......

v Structure of transition metal complex
Input coordinates from single crystal structure
Geometry optimization of transition metal complex of interest

Calculations of EPR parameters are only as good as the
Input structure of the complex.

v Calculation of g and A using EPR subroutine in a
commercial or academic software package
Amsterdam Density Functional Theory software (ADF)34
Gaussian®
ORCA (Neese)®
MagRespect (Kaupp)’

HERO@E 0
C-

FdL_L OO FEN
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Comparison of Software Packages

ADF (commercial)3*
v Slater type orbitals (STO’s)
v Unrestricted calculations, relativistic effects included
v Hybrid functionals not available for EPR calculations

Gaussian (commercial)?®
v (Gaussian type orbitals (GTO’s)

v Unrestricted calculations, nonrelativistic approach
Only a-value calculations

v Many hybrid functionals available

ORCA®, MagRespect’ (academic)
v Unrestricted calculations, relativistic effects included

HEWRO@E a0
C-

FdL_L OO FEN
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DFT Calculations of EPR Parameters for Transition Metals

Is this structure
an accurate
representation of
the transition
metal complex?

Structure for input to DFT calculation:
a) Geometry Optimization
b) Input Crystal Structure

Transition metal g-value calculation Transition Metal A-value calculation
Need relativistic method (ADF, *Relativistic method (ADF, ORCA,
ORCA, MagRespect) MagRespect)-fewer functionals
Choice of functional, basis set *Non-relativistic method, wide range of
hybrid functionals (Gaussian)
*Choice of basis set critical

Are the calculated results basis set or functional dependent?
Do the calculated results deviate systematically from experiment?

FdL_L OO FEN

HERO@E 0
C-
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Example: VO(H,O)**
Geometry Optimization

VO(H,0)5*

Experimental Distances® for VOSO,¢5H,0:
Ry-o: 1.591 A

R v.Leq2-035, 2.038, 2.048, 1.983

R vl a0 2-223

Symmetry restrictions
Included- structure may
not represent energy
minimum

Gas phase structure- no
solvent effects included

Choice of basis set and
functional

HEWRO@E a0
C-

FdL_L OO FEN

©



Choice of Basis Sets and Density Functionals

Basis sets:
v Dependent on software package

v Specialized basis sets may be required for hyperfine calculations -
need flexibility in core region beyond that required for geometry
optimization

Functionals (see Appendix | for more detail):

v Generalized gradient functionals
For example, BP86
v Hybrid Density Functionals include a Hartree Fock (HF) exchange term
leading to better agreement between experiment and theory

Most popular, B3LYP

v Exchange: 20% HF exchange, 8% Slater exchange, 72% Becke-88 gradient
exchange term

v Correlation: 19% Vosko-Wilk-Nussair (VSN), rest is Lee-Yang-Parr

Always good practice to examine basis set dependence and
functional dependence for calculations

FLEC NN

RERO@ 3N
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DFT Calculations of Vanadium g and A-values

Different computational methods have been implemented

v g-values

ADF

v SO+SR UKS (spin orbit coupling and scalar relativistic spin unrestricted open shell
Kohn Sham)

Gaussian- none
ORCA- coupled perturbed SCF calculations

v A-values

ADF-
v SO+SR UKS (new addition to ADF- preferred method)
v Spin orbit with collinear approximation
v Spin unrestricted open shell Kohn Sham (UKS)
v SR UKS (scalar relativistic spin unrestricted open shell Kohn Sham)
v Can be used if spin orbit effects are negligible
Gaussian
v No relativistic effects, many functionals available
ORCA, MagREspect
v Relativistic, unrestricted

FLEC NN

RERO@ 3N
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Table 1: g-value DFT calculations for VO(H,O):%*

Comparison of Results:

gXX

Oyy

gZZ

Program

Method

Ref

EXp.

1.978

1.978

1.933

DFT

1.9852

1.9852

1.9495

ORCA

B3LYP,
coupled
perturbed
SCF
equations
(Neese, 2001)

DFT

1.986

1.986

1.930

ADF

BP86, SO+SR
ROKS

DFT methods have been utilized to calculate the g-tensor for [VO(H,0):]?*. DFT results for g-
value calculations for [VO(H,0):]?* are included in the table, along with experimental g-values
from the literature for comparison. Reasonably good agreement between the experimental and

DFT calculated g-values is observed.

FLEC NN

RERO@ 3N
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Definitions

Two interactions contribute to the vanadium hyperfine coupling tensor:
an isotropic or Fermi contact interaction, A,,, and an anisotropic or
dipolar hyperfine interaction, A,

A, and A, can be calculated from the principal values of the A-tensor
using the following equations:

Ao = (A + Ay + Ag,)/3

Apx = A - A
AD,y = A22 B Aiso
AD,z = A33 - Aiso

The isotropic hyperfine interaction, A.., is related to the spin density at

IS0’

the magnetic nucleus, and therefore inclusion of spin polarization
effects is particularly important for accurate calculations of A,,.

FLEC NN

RERO@ 3N
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DFT Calculations of A.

I1SO

for [VO(H,0):]*"

BLYP BP86 BPW91 B3LYP B3P86 B3PW91 BHLYP BHP86 BHPW91 Exp.

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
50
-100 -
-150 H
-200 A
-250 A

-300 A

324

-350

DFT Method

Comparison of ADF (hatched) and G98 (solid) calculations®!:
«Same functional- similar results
*Overall, hybrid functionals perform best T -

C-14
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DFT Calculations of Ay for [VO(H,O):]?*

BLYP BP86 BPW91 B3LYP B3P86 B3PW9l1l BHLYP BHP86 BHPW91 Exp.

0 \ \ \ \ ‘ ‘ ‘ ‘ ‘
.50 A
-100 A
-150 A
-200 -

-250

224

DFT Method

Comparison of ADF (hatched) and G98 solid) calculations?*:
«Same functional- similar results
|_ess dependent on method than A.., calculations

1SO

FLEC NN

RERO@ 3N
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Comparison of Results:
Table 2: A-value? calculations for VO(H,0O):%*

Aiso AD,X AD,y AD,Z Method Ref

EXp. -324 112 112 -224 - 10

DFT -246 95 96 -192 Gaussian, | 11
BP86

DFT -236 89 90 -180 ADF, 11
BP86,
SRUKS

DFT -304 97 98 -198 Gaussian, | 11
B3PW91

DFT -268 96 105 -201 ORCA, 12
B3LYP

DFT -249 91 101 -193 ORCA, 12
BP86

DFT -293 103 103 -207 ORCA 9
B3LYP

aAll A-values are given in MHz

FLEC NN

RERO@ 3N
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Summary of DFT A-Value Calculations for
VO(H,0)5**

The vanadium isotropic hyperfine coupling constant calculated with ADF or
Gaussian and the BP86 functional systematically underestimates the
experimental value by approximately 80 MHz.

The hybrid functionals, such as BHPW91 and B3PW91, incorporate Hartree-
Fock exchange, and provide more accurate vanadium hyperfine coupling tensors
relative to the GGA functionals.

v As shown in Table 2, the vanadium isotropic hyperfine coupling constant calculated
with the hybrid functional B3PW91 is -304 MHz, which only deviates by 20 MHz
from the experimental value.

DFT calculated vanadium isotropic coupling constants from other research
groups are also presented in the table for comparison, with the realization that
some of the variability of results is due to the fact that all groups did not use the
same structural coordinates for [VO(H,0).]%*.

For VO2* systems, with small spin orbit coupling contributions, the
nonrelativistic DFT calculations provide very good accuracy for isotropic
hyperfine coupling constants with hybrid functionals. Currently, hybrid
functionals cannot be used in relativistic calculations with ADF, thus limiting the
accuracy of these calculations. The implications for transition metals with

FLEC NN

significant spin orbit coupling such as Cu?* are much greatero mmm W W W
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Ligand Hyperfine Coupling Constants:
Calculated Proton Hyperfine Coupling Constants®? in
VO(H,0),%

VO(H,0),*

Q)
@W

@
O

®

Proton hyperfine coupling constants vary depending on
orientation of the water molecule.

FLEC NN

RERO@ 3N
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Comparison of Calculated Proton Hyperfine
Coupling Constants® with Single Crystal ENDOR

Proton Number? Aiso | MHz
17 -0.39
18 4,08
T:ET 17 0.05
g = .
<& 18 457
19 8.67
20 7.14
19' 7.73
20' 6.96

# Numbering scheme from ENDOR work of
Atherton and Shackleton (Mol. Phys. 39, 1471, 1980)

Proton ENDOR data(table above)4 interpreted using the graph at the left suggests that
two water molecules are oriented approximately in the equatorial plane (17, 18, 17°,
18’) and the other two water molecules (19, 20, 197, 20°) are rotated approximately 90° A

relative to the equatorial plane. BEER OO 3%
C-19
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MHz
A

-7

-8

Complexes investigated include:

[1]VO(aly),, [2]VO(edda), [3]VO(meox),, [4]VO(salen), and [5] [VO(SCN),]=
where gly-glycinate, H,edda = ethylenediamine-N,N’-diacetic acid, meox = oxobis(2-
methylquinolim-8-olato), and H,salen = N,N’-bis(salicylidene)ethylenediamine.

Calculated Nitrogen A, Values for Selected
Vanadyl Complexesl5 (ADF, BP86)

Amine

Imine

SCN

[1]

(2]

(3]

[4]

(5]

Solid bars = calculated
values (SR UKS)

Gray bars = experimental
values

FLEC NN
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MHz

-0.2 1

-0.4 -

-0.6

-0.8 A

-1.2

-1.4

-1.6

-1.8

Calculated Nitrogen Q,, (or 3K) Values for Selected
Vanadyl Complexes!> (ADF, BP86)

Amine

Imine

SCN

[1]

(2]

(3]

(4]

Complexes investigated include:

[1]VO(aly),, [2]VO(edda), [3]VO(meox),, [4]VO(salen), and [5] [VO(SCN),]=

Black bar=calculated values
(SRUKYS)

Dark gray bar=Calculated values
(SO+SR ROKYS)

Light gray bar=experimental values

e’gQ
4h

FLEC NN
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Summary of Results:
Ligand Coupling Constants (HCC, QCC)

Better quantitative agreement can be obtained for DFT
calculations of ligand A-values in vanadyl complexes
relative to the transition metal hyperfine coupling
constants.

Less sensitive to choice of functional

Good agreement also observed for calculated ligand
quadrupole coupling constants

Many promising applications for DFT calculations of
ligand coupling constants to assist the interpretation of
pulsed EPR and ENDOR experiments.

FLEC NN

RERO@ 3N
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Other Selected DFT Studies of Vanadyl
Complexes in the Literature:

Calculated hyperfine coupling constants of vanady!l
complexes with Schiff bases1®

Calculations of the effect of the orientation of an imidazole
ligand in a vanadyl complex on the vanadium hyperfine
coupling constant.1’

Vanadyl complexes of Hcapca ((N-{2-(2-
pyridylmethylene(amino)phenyl]pyridine}-2-
carboxamide))18

Calculation of 7O hyperfine coupling constants® for
V(H0)s%*

Calculation of 31P HCC’s for vanadium complexes with
tridentate bisphenol ligands with various donor atoms?®

RERO@ 3N
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Other Transition Metals:
DFT Calculations of g and A-values for Copper
Complexes

Cu(l1)- d? electronic configuration, 1=3/2
Calculations of A-values and g-values

Spin-orbit coupling much larger for copper
relative to vanadium

Gaussian calculations- no relativistic effects-not a
good choice for copper A-value calculations

ADF-
v SR UKS- unrestricted, no spin orbit coupling
v SO ROKS- restricted, spin orbit coupling included
v SO SR UKS- unrestricted, spin orbit coupling

Included BEB LW W

C-24
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DFT Calculation of Copper A, ,?° for Selected Copper
Complexes

Cu(quin) [Cu(ox), 12 Cu(acac), Cu(L-ala),

Gray bars (left) = SR UKS (BP86)

50 | Black bars (middle) = SO+SR UKS
(BP 86)
$ 100 | Tan bars (right)=experimental results
<
Cu(Quin),,[Cu(ox),]*, Cu(acac),
1507 and Cu(L-ala),,
Where,
2000 quin = 8-quinolinolato,
B — L — ox = oxalate,
-250 acac = acetylacetonate

L-alaO = alaninate.

Good agreement of SR UKS calculations with experimental data is a
consequence of cancellation of errors. Ligand field theory predicts that the
Fermi contact and dipolar terms are negative for d° square planar complexes
and 2" order SO effects are positive resulting in a cancellation of large

rrors.?!
errors TI1IELL LY
C-25
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Good Agreement??

Cancellation of errors:20. 21

Example' Cu(acac), with BP86 functional:

v A, (SR UKS)=-225 MHz

v A, (SO SR UKS)=-141 MHz

v leference spin orbit coupling = 84 MHz

v Ay, (exp)=-231 MHz

Cancellation of errors causes best quantitative
agreement for SR UKS method

v underestimation of spin polarization by GGA functionals
v exclusion of spin orbit coupling

FLEC NN

Must exercise caution when using DFT methods!
2L LY
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DFT Calculation of Copper Ap,?°for Selected Copper

Adz,

Complexes
Cu(quin) u(ox), 12 Cu(acac), u(L-ala),
0 R L e Gray bars (left) = SR UKS (BP86)
50 - Black bars (middle) = SO+SR UKS
-100 1 (BP 86)
150 | Tan bars (right)=experimental results
-200
250 | Cu(Quin),,[Cu(ox),]#, Cu(acac),, and
Cu(L-ala),,
-300 - Where,
350 | quin = 8-quinolinolato,
0X = oxalate,
400 7 acac = acetylacetonate
-450 L-alaO = alaninate.

The DFT calculations of A, are sensitive to spin orbit coupling effects but
not very sensitive to spin polarization effects. Quantitatively very good
results were obtained using the SO+SR UKS method (black bars).

RERO@ 3N
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Calculated Cu(ll) g-values 22

Cu(L*(OHy),J*
g, =2.041 (exp) Nﬂ N:<NH2
g, =2.043 (B3LYP, ORCA) < o % .
g ,=2.191 (exp) i N \N—/<
(B
g, =2.137(B3LYP, ORCA) N
CU(L1]2+
Good agreement for g, and not as good for g,.
Believed to be a result of an overestimation of covalency in Cu(ll) .
complexes by DFT functionals.22 .
v Generally Ag, (exp. vs. DFT) is approximately 0.05 for Cu(ll) complexes. o
-
-
_|
-

RERO@ 3N
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Other Selected DFT Studies of Copper
Complexes in the Literature:

Calculated g and A-values for di and tri-nuclear Cu(ll)
complexes with melamine-based oligomacrocyclic
ligands??

DFT calculations of ligand superhyperfine structure of
Cu(ll) complexes?s

CuNO complexes on a catalyst surface?*

FLEC NN
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Conclusions

DFT calculations of EPR parameters can be used to predict
trends in transition metal hyperfine coupling constants for
transition metals.

v Quantitative agreement with experiment still difficult to achieve with
currently available methods.

Accurate calculation of spin polarization is the major barrier to
quantitative agreement

v Improved density functionals necessary

v Deviations are systematic for similar complexes so trends in EPR
experimental parameters can be predicted.

v Solvent effects generally not considered since methods are generally not
yet accurate enough to warrant their inclusion.

DFT calculations of ligand hyperfine coupling constants
generally show better quantitative agreement with experiment
than transition metals. LT LELELL

C-30
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Introduction

As we have seen from the previous two sections, the hamiltonians for molecules can be
very complicated, but this complexity yields the important details of the molecule’s
reactivity and structure. This section deals with extracting the important parameters from
the EPR experimental data in order to test the theoretical results obtained from the
calculations. Successful simulation of the experimental EPR spectra yields the spin
hamiltonian parameters that summarize the EPR results and can be used to test the
theoretical calculations. This section is not meant to be exhaustive treatise on EPR
simulation, but to introduce the essential concepts and nomenclature. The reader is
encouraged to investigate the EPR references at the end of this section. [1-3]

The Spin-hamiltonian

Many people use the spin-hamiltonian, but are not aware of its history and why it was
developed. In the early days of EPR, much of the research involved signal crystals
containing transition metal ions. The actual hamiltonians of these systems are described
by a bewildering collection of crystal field, spin-orbit coupling, spin-spin interaction and
nuclear hyperfine effects. These hamiltonians contain many of the terms used in the
theoretical calculations.

One major drawback in using this general hamiltonian is that in order to faithfully report
your experimental results, you would have to list all the fields for resonance as a function
of magnetic field orientation and microwave frequency. Also, many of the effects of the
many interactions influence the EPR spectra in subtle ways. It is these subtle effects in
the EPR spectra that offer the insight into the general picture of the electronic structure of
the complex.

In 1951, Abragam and Pryce [4] resolved these two issues in their seminal paper deriving
the spin-hamiltonian. First, it derives a formalism with a minimum number of parameters
to describe the EPR data. Now, a few important parameters such as g values and
hyperfine coupling constants can be used to succinctly quantify many pages of
experimental results. Second, it concentrates on the effects, almost as if with a
magnifying glass, that the big picture and all the interactions have on the EPR data. The
spin-hamiltonian parameters thus afford a means of obtaining insights into the electronic
structure of the complex.



The result of the paper is the familiar spin-hamiltonian that we commonly see in EPR
papers:

H=P.By-g-S+8 DS+ AL+1"-Q 1-y\ByBy L

where: - B

B, | Bohr magneton

B, | Externally applied magnetic field

T | Signifies the transpose of a vector

g | g-matrix

3 Electron spin operator

5 Zero field splitting tensor

; Nuclear hyperfine coupling matrix

I | Nuclear spin operator

Q | Nuclear quadrupolar interaction matrix

;Z“ Nuclear gyromagnetic ratio

g Nuclear magneton

The first term, BeBg -g- S, 1s interpreted as the electronic Zeeman interaction. The g-

matrix reflects the interaction of the electron spin and orbital angular momentum with the
external applied magnetic field. The g-value can help identify a paramagnetic species as
well as tell us about the electronic state, spin-orbit coupling and symmetry of the
paramagnetic site.

The second term, §T -D- 8, is the zero-field splitting (ZFS). It represents spin-spin

interactions, spin-orbit coupling, and exchange terms. The ZFS terms inform us about the
spin and valence state as well as symmetry of paramagnetic centers. This term arises only
for systems with S > Y.

The third term, §-A-I, reflects the hyperfine interaction between the electrons and the

nuclei. The nuclear hyperfine interactions supply us with identity, number, and distances
of surrounding nuclei. It is also a good reporter of electron spin density at specific places
in a complex or radical. This interaction only occurs for nuclei with I > 0.

The lT Q-1 term represents the quadrupolar interaction of the nuclei with the local

electric field gradients. This gives us information about local symmetry and charge
density near the nucleus. This term only arises for nuclei with [ > Y.

The last term, —yB.B, - I, is the nuclear Zeeman interaction. This interaction only

occurs for nuclei with [ > 0.



At times, there may be other terms that are needed to describe the data. In high spin
systems such as iron, many other terms are included.

This spin-hamiltonian is a second-order perturbation treatment of the actual hamiltonian.
As with any approximation, there are always a few caveats. First, depending on the
interactions in your system, it may not parameterize your EPR data. Second, though the
spin-hamiltonian may successfully parameterize your EPR data, there may be some
circumstances in which the assumptions regarding the spin-hamiltonian derivation do not
hold or additional interactions have been neglected. This rarely occurs, however, you
should be aware that this happens from time to time.

Calculating Field Positions from Spin-hamiltonian
Parameters

In order to extract the spin-hamiltonian parameters from the EPR data, we must be able to
simulate the EPR spectrum given a specific set of spin-hamiltonian parameters in order
that experimental data can be compared with the theoretical spectrum. If we were able to
sweep our microwave frequency instead of the magnetic field, life would be easy. If you
construct the hamiltonian matrix, you could simply find the eigenvalues for the given
magnetic field and you have the EPR spectrum.

EPR spectra are usually acquired with constant microwave frequency and the magnetic
field is scanned. Calculation of the field positions is not as simple a task as the solution of
a single eigenvalue. Several approximations and approaches have been developed to deal
with this difficult. The following sections describe some of these solutions in order of
increasing precision.

First Order Perturbation Theory

Perturbation theory allows you to calculate the approximate eigenvalues of the spin-
hamiltonian. The approximate solution can then be solved to yield an analytical
expression for the magnetic field. For the electron Zeeman and nuclear hyperfine
interaction, you obtain the following simple expression for the fields for resonance in the
EPR spectrum.

hv—Am, _ B,
9/

where my is the nuclear spin quantum number. The spectrum center is determined by the
electronic g-value and the line is split into several lines at regular intervals determined by
the hyperfine coupling constant.



Perturbation theory uses the approximation that one interaction is far stronger than the
other interactions. In EPR, the electron Zeeman term is usually the dominant term and the
nuclear hyperfine interaction is smaller. This approach works very well for small
hyperfine coupling constants (for X-band, splittings less than 10 G and you do not want
very precise field positions) and even for considerably larger splittings, it gives you an
estimate of the hyperfine coupling constants.

Higher Order Perturbation Theory

Sometimes the approximations for first-order perturbation theory are no longer valid.
There are higher order approximations that correct the results of less higher order
solutions to yield more precise field positions. Historically, second order perturbation
theory has been used; Weil [5] derived all the terms to second order. What you will
notice is that compared to first order perturbation theory, the center of the spectrum is no
longer completely determined by the g-value and the splittings are no longer equal.
Higher order perturbation theory works well for nuclear hyperfine splittings less than 100
G at X-band. It should be noted that many of the other interactions in the spin-
hamiltonian such as the ZFS and quadrupolar interaction do not show any effects in the
calculation of an EPR spectrum unt?l these higher order effects are included.

First Order

Second Order

Figure 1. The higher order terms result in a shift of the center line and the lines no longer
have a regular spacing when compared to the first-order spectrum.



Exact Diagnolizations

Exact diagonalization simulations of EPR spectra involve exact solutions of the spin-
hamiltonian matrix at many different field values. This is a computationally intensive
process, but does not suffer from the approximations of the perturbation technique. For
high spin systems and systems with large forbidden transitions, this is the preferred
method.

Traditionally EPR has benefited from technology that has been developed for other
purposes. The development of RADAR during World War II is an example where EPR
benefit from the new microwave technology. Today, the hardware power that sits on our
desk that allows us to listen to music and watch movies also allows us to simulate EPR
spectra with more computationally intensive but also more precise simulations.

One of the earlier solutions was the use of eigenfields. [6] Later on, computationally
more efficient algorithms were developed [7] that are used in XSophe.

Lineshapes

Typically the field for resonance for each EPR transition is calculated. If this is all we
did, we would get a collection of stick spectra. In order to correctly simulate the spectra,
we need to assume a line shape model for each of the calculated resonances.

Homogeneously vs. inhomogeneously broadened lines

For homogeneous broadening, the lineshape is determined by the relaxation times. In
cases of resolved spin-packets or relaxation so fast that overlap or spin-spin splitting is a
minor perturbation, we obtain relaxation determined lorentzian lineshapes. The EPR
spectrum is the sum of a large number of lines each having the same Larmor frequency
and linewidth.

For inhomogeneous broadening, the lineshape is determined by unresolved couplings
because the EPR spectrum is the sum of a large number of narrower individual
homogeneously broadened lines that are each shifted in frequency with respect to each
other. Gaussian lineshapes are a common result.

Homogeneous
Broadening

Inhomogeneous
Broadening

Figure 7. Homogeneous and inhomogeneous broadening.



Kivelson Model for Intermediate Regime Motion

For intermediate regime motion in which the anisotropic interactions are not averaged
out, the linewidths can be often parameterized by a polynomial as a function of my, the
nuclear spin quantum number [8]. The coefficients a, b, ¢, and d can be related to the
solvent viscosity, correlation time, molecular hydrodynamics radius and the anisotropy of
the spin system.

o,=a+bm +cmi+dmj

Angular Variation of Linewidths

In solids, the linewidth may vary with the orientation of the applied magnetic field with
respect to principal axes of the g-matrix [2]:

2 — 2 ~292 2 22 2 ~242 2
O'v_(O'xgxlx+Uygy|y+Uz gzlz)/g

where o; (1=X,y,z) are the input linewidth parameters, g; (i=x,y,z) are the principal values
of the g matrix, l; (i=x,y,z) are the direction cosines of the magnetic field with respect to
the principal axes of the g matrix, and g* = g 1> + gy2 ly2 +g° 1,7

Strain Models

Many times, the spin-hamiltonian parameters may not have a single value. Species within
a sample may vary in structure owing to a number of factors such as slight changes in
local structure. A protein may assume several different conformations when it freezes.
These situations may often be simulated by assuming a correlated g-A strain model in
which both the g and A values are assumed to be described by a Gaussian distribution
[9]. Similar models have been developed for D and E strain for high spin systems [10].

Types of Samples

The type of sample has a great influence on the strategies and techniques used for
simulating EPR spectra.

Liquids

The spin-hamiltonian is typically anisotropic, i.e. the EPR spectrum is dependent on the
direction of the magnetic field with respect to the molecular axes. In many liquids, the
paramagnetic species are tumbling so fast that the anisotropic components are averaged
out and only the isotropic parts remain. These systems are often the fastest to simulate
because only one orientation of the externally applied magnetic field needs to be
simulated.
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Figure 2. EPR spectrum of PNT (perynaphthalene) in oil.

Single Crystals

For single crystal experiments, the sample orientation is varied with respect to the

externally applied magnetic field. When you rotate the crystal in a specific plane and

acquire the EPR spectra at regularly spaced angles, a “roadmap” is produced. A
simulation for each angle is then required in order to simulate the roadmap.
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Figure 3. Roadmap of Cr” in a ruby single crystal.
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Powders and Frozen Solutions

Powders are essentially ground up crystals. In order to simulate spectra for such samples,
we need to add up all the contributions from all of the magnetic field orientations.
Typically this is done by creating a grid of orientations. There are several grids that can
be used and many are optimized for the minimum number of orientations required to
faithfully characterize the EPR spectrum with maximum computational efficiency.

S~
o

Figure 4. A simple grid for simulating powder spectra and the more efficient SOPHE grid
[11].

We are sampling a finite number of orientations to create simulations for this class of

samples. If we do not sample sufficient orientations, you may notice a somewhat spiky

simulation (the “grass” effect). (This is similar to what happens if you do not grind your

powder sample finely enough.) If you see this type of feature, increasing the number of

orientations usually remedies the problem.

XSophe-PowderMatrix_default

T T T T T T T T T T T T T T T
2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200
Field [G]

XSophe-PowderMatrix_default

7.6+07 BWR
6.6+07 &é

T T T T T T T T T T T T T T T
2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200
Field [G]

Figure 5. Upper spectrum shows “grass” from insufficient orientations. Lower spectrum
was simulated with more orientations, showing much less “grass”.
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Intermediate Motional Regime

Liquid samples are an example of the fast limit motional regime in which the reciprocal
of the rotational correlation times are much faster than the anisotropic interactions and
the anisotropy is averaged out. The other types of samples are examples of the slow limit
motional regime in which the reciprocal of the rotational correlation times are much
slower than the anisotropic interactions and the anisotropy is clearly present in the EPR
spectrum. For the intermediate regime in which the reciprocal of the rotational correlation
times are of the same order of magnitude as the frequencies of the anisotropic
interactions, the EPR spectra can exhibit unusual lineshapes owing to incomplete
averaging of the anisotropic interactions. Examples are slow tumbling of radicals in a
viscous solution, slow local motions, or large anisotropy.

Calculation of such spectra for this class of samples a priori is much more complicated
than for the previously mentioned types of samples. Jack Freed [12] has advanced the
topic with theory development and software. In some cases, the linewidths can be
characterized with polynomials in my [§8].
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Figure 6. Vanadyl-acac showing varying linewidths due to incomplete averaging of
anisotropy.

Optimization

The purpose of simulation is to obtain the spin-hamiltonian parameters from the
experimental spectra. So far, we have only discussed simulating spectra with known spin-
hamiltonian parameters. In the past, you would simulate the spectrum, compare it to the
experimental spectrum, modify the spin-hamiltonian parameters and hope at some point
the simulation matches the experimental spectrum.

Because of efficient simulation algorithms and the powerful computing hardware
available today, there are a number of computer optimization methods that can extract the
parameters. If we have some good initial estimates (or guesses) for a starting point, these
methods will seek the parameters by optimizing (or minimizing) GF (Goodness of Fit):

GF=( Y Yeo-S (Bvi)*a V)* I (N* o)

i=1
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where the experimental spectrum (Y.xp) has been baseline corrected assuming a linear
baseline and the simulated spectrum has been scaled (a)) to Yexp. N is the number of
points in common between the experimental and simulated spectra and ¢ is the
magnitude of noise in the spectrum.

There are a number of optimization methods available such as Hookes and Jeeves [13],
Simplex [14], quadratic, and simulated annealing [7]. It is difficult to judge which one
will work the best (with regards to computation time or quality of the fitted parameters)
for your particular optimization. It is probably best to try several methods and compare
the final results.

Before optimization, it is important to baseline correct the EPR data first. Another
important issue when fitting is the scaling between the experimental and simulated data.
This scaling can be performed with respect to the peak to peak amplitudes or the
integrated intensities. The integrated intensity normalization has advantages when the
spectrum is noisy owing to the noise suppression of the integration.

There may be cases in which comparison of the FFT (Fast Fourier Transform) of the
experimental and simulated spectra may be better than a direct comparison. The FFT
method provides increased resolution through separating the high and low frequency
components [15].

Background signals or impurities can skew the spin-hamiltonian parameters. Also
overlapping spectra of different species can cause problems. In such cases it may be
advantageous to not simulate the whole spectrum but only the portion relevant to the
species of interest.

There are a few issues that are important when using optimization methods. First, it is
important to have good initial guesses for the parameters. If not, the optimization method
may not converge to a good solution and may do so only after a very lengthy calculation.
Second, it is important to recognize that there may cases in which your experimental
spectrum may not yield meaningful parameters. The optimization method will spit out an
answer, but is the answer unique or meaningful? Inhomogeneous broadening may mask
the information you are seeking. If some of the interactions are close in magnitude, the
answer may not be unique. The optimization method may have found a false minimum
got GF. Always scrutinize the answer you have obtained with a critical eye. Even better,
if there are any doubts, you may want to consider data from other microwave frequencies.

Importance of Multi-frequency Measurements

There are magnetic field dependent (electron and nuclear Zeeman interactions) terms and
field independent (most of the other interactions) terms. By acquiring EPR spectra at low
frequency, you accentuate the effects of the field independent part on the EPR spectrum
such as the hyperfine interactions. By acquiring EPR spectra at high frequency, you
accentuate the effects of the field dependent part on the EPR spectrum such as the g-
values. Much of this topic was covered in the 2001 Workshop on Multi-Frequency EPR.

D-10



Here is an example in which performing experiments at three frequencies (S, X, and Q-
band) yields important information regarding a low symmetry Molybdenum complex.

Figure 8. The low symmetry Mo site of Tp*Mo"SX, [Tp* = hydrotris(3,5—
dimethylpyrazol-1-yl)borate; X = benzene-1,2-diolate (cat)][16].
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Figure 9. Multifrequency EPR of a low symmetry Mo(V) site [16].

The Q-band spectrum yields precise g-values because the field dependent interactions
(electron Zeeman interaction) are emphasized at higher magnetic fields and frequency.
The S-band spectrum yields the Euler angles between the principal axes of the g and A
matrices. One set of parameters is able to simulate the spectra at all three frequencies.
The DFT calculations are in agreement with the spin-hamiltonian parameters and yield
information regarding the electronic structure of the complex.
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Figure 10. Interpretation of the spin-hamiltonian parameters via DFT calculations [16].
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1.  Introduction

Multifrequency continuous wave electron paramagnetic resonance (CW EPR) and pulsed EPR
spectroscopy [1-8] are powerful tools for characterising metal centres in transition metal ion complexes,
metalloproteins and other paramagnetic, ferromagnetic and antiferromagnetic materials, such as free radicals
molecular magnets, nanomaterials, surface coatings, solid state materials and metallodrugs. Metalloenzymes
comprise approximately 50% of all known proteins and are involved in a variety of biologically important
processes, including oxygen transport, bio-synthesis, bio-degradation, drug metabolism, proteolysis and
hydrolysis of amides and esters, environmental sulfur and nitrogen cycles and disease mechanisms.[9-11] The
diversity of reactions catalysed by these metalloenzymes is reflected in the large number of different redox
cofactors incorporated into and stabilised by the secondary and tertiary protein structure. Examples of some
these cofactors are shown in Figure 1.
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Figure 1: Examples of redox cofactors found in metalloproteins. (a) A [Fe,-S,]*"'* cluster, (b) A [Fes-S,]"**
cluster, (c) A [Fe,-Ss]*"*"**'* cluster, (d) The molybdenum cofactor in xanthine oxidase, (¢) The molybdenum
cofactor in dimtheylsulfoxide reductase, (f) A heme prosthetic group and (g) The iron molybdenum cofactor in
nitrogenase.

E-2



Computer simulation of the experimental randomly oriented or single crystal EPR spectra from isolated or

coupled paramagnetic centres is often the only means available for accurately extracting the spin Hamiltonian

parameters required for the determination of structural information [1,2,12-28]. EPR spectra are often complex

and arise through a range of interactions involving one or more unpaired electrons, the external magnetic field

and one or more nuclei. Pictorially, these interactions are shown in Figure 2 and in summary:

Unnaired Electron

the electron Zeeman interaction involves the interaction of the magnetic dipole moment associated with
the spin and orbital angular momentum of the unpaired electron with an externally applied magnetic
field. The magnitude of this interaction is described the 3x3 g matrix. (B.g.S);

the fine structure interaction involves the interaction between the magnetic dipole moments of electrons
on an atom containing more than one unpaired electron. The magnitude of this interaction is decribed
by the second rank D tensor. Second order terms, D and E/D correspond to the axial zero field splitting
(D) and the asymmetry parameter E/D which varies from O (axial symmetry) to 1/3 (rhombic symmetry)
(S.D.S),
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Figure 2: Spin Hamiltonian Interactions

the hyperfine interaction involves the interaction between the magnetic dipole moments of the unpaired
electron(s) and the nucleus of the same atom. The magnitude of this interaction is described by the
hyperfine (A) 3x3 matrix. (S.A.I);

the superhyperfine interaction involves the interaction between the magnetic dipole moments of the
unpaired electron and nucleus of different atoms. The magnitude of this interaction is described by the
hyperfine (A) 3x3 matrix. (S.A.I);

the quadrupole interaction requires the existence of a quadrupole moment which arises from an
inhomogeneous electric field gradient at the nucleus. By necessity, the nuclear spin must be greater than
15 and the nucleus must experience a symmetry lower than cubic. The magnitude of this interaction is
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described by a second rank tensor Q or P, both of which are used interchangeably in the literature and
throughout this document (I1.Q.I) or (I.P.D);
the nuclear Zeeman interaction involves the interaction of the magnetic dipole moment arising from the
nuclear spin with an externally applied magnetic field (y B.I) and

« the exchange interaction involves the interaction of magnetic dipole moments of unpaired electrons on

different atoms. This interaction can occur through molecular orbitals (J S.S, G SxS) or space (S.J.S).

Mathematically these interactions can be written using a spin Hamiltonian formalism. For an isolated
paramagnetic centre (A) a general spin Hamiltonian [1,2,12] is:

H =S DS+ pB-gS+SAI+1-01-y(l—0)B-I (1)

where S and I are the electron and nuclear spin operators respectively, D the zero field splitting tensor, g and A
are the electron Zeeman and hyperfine coupling matrices respectively, Q the quadrupole tensor, Y the nuclear
gyromagnetic ratio, 0 the chemical shift tensor, 3 the Bohr magneton and B the applied magnetic field.
Additional hyperfine, quadrupole and nuclear Zeeman interactions will be required when superhyperfine
splitting is resolved in the experimental EPR spectrum. When two or more paramagnetic centres (A, i,j = 1, ...,
N) interact, the EPR spectrum is described by a total spin Hamiltonian (Hr,,;) which is the sum of the individual
spin Hamiltonians (Ha;, Eq. (1)) for the isolated centres (A;) and the interaction Hamiltonian (H,; ) which
accounts for the isotropic exchange, antisymmetric exchange and the anisotropic spin-spin (dipole-dipole
coupling) interactions between a pair of paramagnetic centres [1,13,14].

N N
Hpw = 2 Hy 0 2 H, @)
i=1 ¢ i,j=1,i#j i
H =J S S + G S xS + 8 D S
A A A A A A A A A A
ij ij i J 1] 4 J 4 tJ J

Computer simulation of randomly oriented or single crystal EPR spectra from isolated or coupled
paramagnetic centres is required to accurately determine the spin Hamiltonian parameters (Egs. 1 and 2) and the
electronic and geometric structure of the paramagnetic centre. The simulation of randomly oriented EPR spectra
is performed in frequency space through the following integration [1,26]:

N N
2
> >0 |/ij flv, — v, (B), o,]|dcos 0 do
0i=0 j=i+1 3)

S (B,v_ )=C }

06=0 o

[| &

where S(B, v.) denotes the spectral intensity, Il;? is the transition probability, V. the microwave frequency, V,(B)
the resonant frequency, 0, the spectral line width, f[V. - V,(B), 0 ,] a spectral lineshape function which normally
takes the form of either Gaussian or Lorentzian, and C a constant which incorporates various experimental
parameters. The summation is performed over all the transitions (i, j) contributing to the spectrum and the
integrations, performed numerically, are performed over half of the unit sphere (for ions possessing triclinic
symmetry), a consequence of time reversal symmetry [1,12]. For paramagnetic centres exhibiting orthorhombic
or monoclinic symmetry, the integrations in Eq. (3) need only be performed over one or two octants respectively.

Whilst paramagnetic centres with an axially symmetric spin Hamiltonian only require integration over 8 between
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0 and T2, those possessing a spin Hamiltonian with cubic symmetry require only a single orientation. Whilst
perturbation theory involves an analytical expression for the calculation of resonant field positions and is
therefore inherently computationally very fast, it breaks down when state mixing occurs. Consequently, the
better and more general approach is too employ numerical matrix diagonalization which does not suffer from
this problem, though for large spin Hamiltonian matrices this can be computationally expensive.

Experimentally the CW EPR experiment is a field swept experiment in which the microwave frequency (Vv
¢) is held constant and the magnetic field varied. Computer simulations performed in field space assume a
symmetric lineshape function, f in Eq. (3) (f(B-B.), 0s), which must be multiplied by dv/dB and assume a
constant transition probability across a given resonance [1,29]. Sinclair and Pilbrow [30,31] have described the
limitations of this approach in relation to asymmetric lineshapes observed in high spin Cr(IIl) spectra and the
presence of a distribution of g-values (or g-strain broadening). The following approach has been employed by
Pilbrow et al. in implementing Eq. (3) (frequency swept) into computer simulation programmes based on
perturbation theory [1,29]. Firstly, at a given orientation of (8, ¢), the resonant field positions (B.,) are
calculated with perturbation theory and then transformed into frequency space (Vo(B)). Secondly, the lineshape
[five-vo (B), 0,)] and transition probability are calculated in frequency space across a given resonance and the
intensity at each frequency stored. Finally, the frequency swept spectrum is transformed back into field space.
Performing computer simulations in frequency space produces asymmetric lineshapes (without having to
artificially use an asymmetric lineshape function) and secondly, in the presence of a large distribution of g-
values will correctly reproduce the down field shifts of resonant field positions [29]. Unfortunately, this
approach cannot be used in conjunction with matrix diagonalization as a very large number of matrix
diagonalizations would be required to calculate f and the transition probability across a particular resonance
resulting in unacceptably large computational times. In Sophe (field space version), we assume a symmetric
lineshape function, multiplied by dv/dB and a constant transition probability across a given resonance.

Previously we developed the XSOphe—Sophe—XeprVieW® computer simulation software suite [19-24,31]
(Figure 3) for the analysis of isotropic, randomly oriented and single crystal CW EPR spectra. The  software
suite consists of: XSophe, an X-windows interface; the Sophe authentication and Common Object Request
Broker Architecture (CORBA) daemons; Sophe, a state-of-the-art computational programme for simulating CW
EPR spectra and XeprView®, Bruker Biospin's programme for visualising and comparing experimental and
simulated spectra. The functionality of the XSophe software suite is shown below [23-24]:
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Figure 3: The XSophe (v 1.1.4) main Window. The interface allows the creation and execution of multiple input
files on local or remote hosts. There are macro task buttons to guide the novice through the various menus and
two button bars to allow easy access to the menus. For example the bottom bar (left to right), Experimental
Parameters, Spin System, Spin Hamiltonian, Instrumental Parameters, Single Crystal Settings, Lineshape
Parameters, Transition Labels/Probabilities, File Parameters, Sophe Grid Parameters, Optimisation Parameters,
Execution Parameters and Batch Parameters.

Experiments

®
Continuous Wave EPR Spectra displayed in XeprView

Energy level diagrams, transition surfaces and transition roadmaps displayed in a Web Browser
(Mozilla).

Spin Systems
Isolated and magnetically coupled spin systems.

An unlimited number of electron and nuclear spins is supported with nuclei having multiple
isotopes.

Spin Hamiltonian Interactions
2" order Fine Structure Interaction, 4™ and 6™ order corrections (S.D.S, B4, B6) [12].
Isotropic and Anisotropic Electron Zeeman ( g3B.S, 3 B.g.S).
Isotropic and Anisotropic Hyperfine (aS.I, S.A.I).
Nuclear Zeeman Interaction for nuclei (gn [y B.I).

Quadrupole (I.PI).



Isotropic Exchange (Jis Si.S;)-
Anisotropic Exchange (dipole dipole coupling) (S;.J.S;).

Continuous Wave EPR Spectra
Spectra types:
Solution, randomly oriented and single crystal.
Symmetries:
Isotropic, axial, orthorhombic, monoclinic and triclinic.
Multidimensional spectra:

Variable temperature, multifrequency and the simulation of single crystal spectra in a plane.

Methods
Matrix diagonalization - mosaic misorientation linewidth model.
Sophe Interpolation.

A choice of perturbation theory or matrix diagonalization for superhyperfine interactions.

Optimisation (Direct Methods)
Methods:
Hooke and Jeeves.
Quadratic variation of Hooke and Jeeves.
Simplex.
Two Simulated Annealing methods.

Spectral Comparison:
Raw data and Fourier transform.

XSophe allows transparent transfer of EPR spectra and spectral parameters between XSophe, Sophe and

XeprView®, using state-of-the-art platform-independent CORBA libraries. This interactivity allows the
execution and interaction of the XSophe interface with Sophe on the same computer or a remote host through a
simple change of the hostname. XSophe contacts the Sophe CORBA daemon, which then interacts with the
Sophe authentication daemon via a Unix socket to validate the username and password which was encrypted
with 128 bit encryption and embedded in a CORBA string. Once validated the Sophe authentication daemon
forks a Sophe which then performs the simulation.

The output of CW EPR spectra (1D and 2D) from the Sophe program can be visualised in conjunction
with the experimental spectrum in XeprView® or Xepr®. Computer simulation of single crystal spectra
measured in a plane perpendicular to a rotation axis can be performed by defining the rotation axis and the initial
and final angles of the magnetic field in the plane perpendicular to this axis. Energy level diagrams, transition
roadmaps and transition surfaces aid the interpretation of complicated randomly oriented EPR spectra and can be
viewed with a web browser (mozilla) and an Openlnventor scene graph viewer (ivview) (Figure 4).

(a) (b)
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Elucidation of the three dimensional crystallographic information (distance and orientation of nuclei with
respect to the atom containing the unpaired electron) of redox active cofactors within a metalloenzyme relies on
the observation of hyperfine coupling between nuclei and the electron spin which is often unresolved in
randomly orientated CW-EPR spectra. The advent of multidimensional pulsed EPR and electron nuclear double
(triple) resonance (END(T)OR) spectroscopy in conjunction with orientation selective experiments and
computer simulation overcome this problem and allows three dimensional structures (electronic and geometric)
of paramagnetic centres to be determined. While electron spin echo envelope modulation (ESEEM)
experiments are particularly sensitive for extremely weak couplings from 4-6 A away from the paramagnetic
centre, the ENDOR experiment is far more sensitive to strongly coupled nuclei 2-4 A away from the
paramagnetic centre. Two dimensional correlation experiments can be applied to ESEEM or ENDOR pulse
sequences, yielding detailed structural information on the number and type of nuclei present and their distance
and relative orientation from the paramagnetic centre. For example, the complete structural characterisation of
the spin density distribution and consequently the structure of the photosynthetic reaction centre (PS I) has been
ascertained through careful two dimensional ESEEM and END(T)OR spectroscopy by Lubitz et al. [32] Pulse
sequences based on pulsed ENTOR have been developed for directly determining crystallographic information
(internuclear separations between nuclei and the paramagnetic centre and their relative orientation with respect
to the paramagnetic centre) directly through the dipole-dipole interaction. [33]

Elucidation of three dimensional crystallographic information (distance and orientation) of multiple
paramagnetic centres within a metalloenzyme relies on the observation of anisotropic exchange (dipole-dipole)
coupling between the multiple electron spins. Whilst CW-EPR can be used to measure the distance and
orientation of redox active centres up to about 8 A apart and power saturation studies can be used to infer slightly
larger distances, pulsed ELDOR allows distances up to 80 A to be measured directly from a Pake doublet. [34]

Traditionally, interpretation of EPR spectra has relied on computer simulation to determine the EPR

parameters which have either then been compared to parameters from well characterised materials to determine
molecular structure or quantum chemistry has been employed to reproduce the EPR parameters (Figure 5).

CW EPR Spectra | €»(  EPR Parameters (—.

Computer Simulation Quantum Chemistry

Figure 5: Traditional Approach to determining molecular structure of molecules from EPR spectra.

Herein we describe an integrated approach 'Molecular Sophe' for the computer simulation of continuous
wave and pulsed EPR and electron nuclear double resonance (ENDOR) spectra, energy level diagrams, transition
roadmaps and transition surfaces. This approach, based on molecular structure, will revolutionise the 3-
dimensional molecular characterization of paramagnetic materials using high resolution EPR spectroscopy.
Until now the analysis of complex CW and pulsed EPR spectra has been based on a spin system rather than
molecular structure and the analysis of pulsed EPR spectra has mainly relied upon analytical expressions
involving perturbation theory.
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Figure 6: New Approach to determining molecular structure of molecules from EPR spectra.
2. Molecular Sophe Computational Software Suite

The Molecular Sophe software suite consists of a graphical user interface, the computational programme
Sophe and a variety of software tools (XeprView®, Gnuplot, ivview and Ghostview) for visualising and
comparing simulations and experimental EPR spectra. This provides scientists with a powerful research tool for
determining the geometric and electronic structure of magnetically isolated and coupled paramagnetic centres
within metalloproteins and other paramagnetic centres. Molecular Sophe is Project oriented. Each project can
contain a number of simulations, each of which contains a sample with one or molecules and then the scientist
can choose a range of experiments to be applied to that sample to elucidate the geometric and electronic structure
of the molecule(s). Upon starting Molecular Sophe (mosophe) a splash screen, similar to that shown in Figure 7
is displayed showing the progress of loading the software and finally allows the user to choose a project from the
Project list to load into Molecular Sophe. This list of projects is stored in the user's home directory
(/home/user/.mosophe/projects).

Figure 7: Splash Screen for Molecular Sophe allowing the user

to choose a project from the user's list of Projects.
Molecular Sophe 2.0.52 Copyright 1933-2005

Centre for kMagnetic Resonance
University of Gueensland, Australia

Project: IIDefauIt ¥ Load |

Iolecular Sophe Initialisation Complete! Select Project.

Pressing the Load button displays the graphical user interface for Molecular Sophe (Figure 8). Molecular
Sophe's graphical user interface incorporates a Menu, Tool bar, Explorer Tree, Forms, Control bar and Message
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bar (Figure 8). The main menu provides access to all functions whilst the toolbar contains some of the
commonly used functions in creating a sample, adding experiments and running external programmes
(XeprView®, printing and the units calculator). The choice of external programmes and CORBA settings should
be set through the Preferences window accessed from the menu (Edit, Edit Preferences) and saved to disk so that
in future runs of Molecular Sophe, the settings are loaded upon startup. All of the Buttons, Fields, Tree Nodes
have context sensitive help which can be accessed by moving the mouse onto the desired widget.

Menu Tool bar

LW HELe e 7| D ae s Ky

r.9 Mul-’:cular:!a: Froj=ci I =)\
File Edit Froject Simsation bMolpcdds Alom Bosi Experinent iog / Help [

= — Parameters

T
—E e Mo Simulation
—[E *g& Molybdenum Enzyme
—E €5 Expetiments

€ Continuous Wave 1
€< Hyscare 1
——{ZiLog

—E &% C Radical
—[& =% Sample

L= g Molecule 1

& H1
& Cl
‘e C1-H1

—E €. Experiments

€. Continuous Wave 1
€. Continuous Wave 2
€. Continuous Wave 3
© FID 1

€. ZPulse ESEEM 1

€ GPulse ESEEM 1
€. SECSY 1

€. ZPulse Echo 1

€2 Mims ENDOR 1

€. Davies ENDOR 1
€ Energy Levels 1

€. Road Maps 1

€ Surface 1
2l oy

L — = ¥ C Radical
—[&1 *$% Sample

Froject Mame Project

Simulation Batch o

Simulation

kAo Simulation Lacal | ao:00.00 Finished

C Radical 00:00.00 Finizhed

C Radical 00:00.00 Finished

0o:00.00

[Sophe (v 2.Df8imulatiun [25097] Started [ 4
Explorer Tree Control bar Forms Message bar
Figure 8: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Project Form.

2.1 Project Form

The Project Form (Figure 8) displays the status of the multiple simulations through timing bars for each
simulation. The timing bars are colour coded: grey — simulation has not been started; green — simulation
running; and red — simulation finished. A right mouse click on the Project Node displays a menu enabling the
user to add and load a simulation, create a new, load, save and delete a project.



2.2 Simulation Form

The Simulation Form (Figure 9) displayed by a left mouse click on the Simulation Node (entitled 'Mo
Simulation' or 'C Radical' in Figure 8) in the Explorer Tree allows the choice of Host on which to execute the
computational programme Sophe (currently only localhost), the process priority, whether to run it interactively
or in a batch queue (currently only interactively) and the XeprView® programme in which to display the
resultant spectra. The name of the simulation can also be modified through the Simulation Form. A right mouse
click on the Simulation Node displays a menu enabling the user to save, delete, copy, print and run a simulation.
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Figure 9: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Simulation Form.*

2.3 Sample Form

The Sample Node (entitled 'Sample' or 'Molybdenum Enzyme' in Figure 8) is the next level of the Explorer
Tree and a left click displays the Form shown in Figure 10. The sample can consist of multiple molecules (added
through the Molecule menu (top toolbar or right mouse click) in different proportions which itself will be able to
be optimised.® This is important for many paramagnetic samples, for example metalloproteins often have more
than a single prosthetic group which is paramagnetic and consequently gives rise to multicomponent EPR
spectra. Inclusion or exclusion of a particular molecule / molecular fragment can be toggled with the radio

$Note: currently, the computational code does not contain optimisation algorithms.
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button adjacent to the Molecule name in the Molecule Form.
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Figure 10: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Sample Form.

The state of the sample (Crystal, Powder, Frozen Solution, Liquid, Gas or Glass) may also be chosen
which will govern various aspects of the computational programme, Sophe. If the Crystal state is chosen, the
user can then select the Point Group for the host crystal.

2.4 Molecule Form

The name of the molecule (Cytochrome C, in Figure 11) can be changed in the Molecule Form and a
comment added if desired. The units for the atom's positional coordinates within the molecule and the lineshape
function for all of the experiments (simulations) can be defined in the Molecule Form (Figure 11).

2.5 Adding Atoms

Once a molecule (Figure 11) has been added at the sample Node, the user can add atoms and subsequently
bonds (really interactions, see Section 2.14) through the Molecule menu or by a right mouse click on the
Molecule Node. In this context, the term bond is loosely defined to include not only bonds but also interactions
between electron spins and either nuclear spins (superhyperfine interaction) or other electron spins (exchange
interaction). Adding an atom displays a Periodic Table (Figure 12) from which the user can select an atom by
clicking (left mouse button) on the appropriate element. The atom is then added to the Molecule in the Explorer.
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Figure 11: Molecular Sophe Graphical User Interface showing the Molecule Form.
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Figure 12: Molecular Sophe Graphical User Interface showing the Periodic Table.
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2.6 Atom Form

A left mouse click on the atom (Explorer Tree) displays the atom forms: Electron Zeeman (Figures 13);
Hyperfine (Figure 15); Fine Structure (Figure 16,17); Quadrupole (Figure 18); Linewidth (Figure 19); Isotopes
(Figure 20) and Position (Figure 21). Each Tab also has a three state button (colour coded tick) associated with
it which may be changed by a middle mouse click. The three states are: Red Tick — Active and Valid; Blue Tick
- Inactive and Valid and No Tick — Inactive and Invalid. A right mouse click on the value, minimum,
maximum fields enables the user to set the range of the parameter to be varied using the toggle up and down
arrows to the right of the parameter field. Currently the Sophe computational code does not have any
optimisation algorithms present as a new method is being developed for the global optimisation of all spin
Hamiltonian parameters from multiple experiments.

2.7 Electron Zeeman Interaction (3 B.g.S) (Figure 2)

The value of the electron spin can be selected and if greater than zero, the atom in the Explorer Tree is
coloured orange (Figure 13) and the Electron Zeeman Tab now has a Red Tick. The symmetry of the Electron
Zeeman Interaction can be chosen by selecting the appropriate Representation (Orthorhombic, Axial and
Isotropic). The Orthorombic Representation is shown in Figure 13. Note the g matrix is dimensionless and
therefore has no units.
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For site symmetries lower than orthorhombic, one or more of the three Euler angles o, 3 and y will be
greater than zero. Rotation of the principal g components (g,, g, and g,) away from the the internal (crystal)axes
is shown in Figure 14. o ( 3 =y = 0) greater than zero rotates (about the Z axis) gx, gy away from the X and Y
axes (Figure 14a), corresponding to C,, monoclinic sites. A rotation of 3 (a =y = 0) rotates (about X) the gy
and gz axes away from the Y and Z axes corresponds to Cs symmetric sites. In randomly oriented samples
containing a single unpaired electron the g matrix is assumed to be coincident with the internal coordinate
system and the hyperfine matrix is rotated from away from the g matrix.

(a) (b)

(©)

Figure 14: Euler Angle Rotations. (a) o about Z, (b) [
about g, (red, unlabeled), (c) y about g, (blue, unlabeled).

The symmetry can be further lowered to triclinic symmetry (C1) by making a, B and y greater than zero. The
angle o rotates g, and g, about Z, (Figure 14a), [ rotates g, and g, about g, (Figure 14b) and Y rotates g, and g,
about the new g, (Figure 14c). There are two Euler angles available for an axially symmetric site and none for an
isotropic site.
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2.8 Hpyperfine Interaction (S.A.I) (Figure 2)

The Hyperfine Tab (Figure 15) is only valid if the atom containing one or more unpaired electrons (the
electron spin is greater than zero) has isotopes with a non zero nuclear spin. The interaction can be turned off/on
with a middle mouse click on the 'red/blue' tick on the hyperfine tab. Identical representations (isotropic, axial
and orthorhombic) to those for the electron Zeeman interaction are available for the hyperfine interaction. The
hyperfine coupling constants correspond to the isotope of the particular atom which has the largest isotopic
abundance. For randomly orientated solutions, containing a single unpaired electron with monoclinic or
triclinic symmetries, the Euler angles, d, 3 and y will be non zero. o corresponds to a rotation about the 'z' (g,)
axis, [3 a rotation about the new A, axis and Yy a rotation about the new A, axis.
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Figure 15: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Hyperfine Interaction
Form.

All interactions apart from from the electron Zeeman interaction have their own units. For the hyperfine
interaction these are: MHz and 10 cm™ and can be selected from the Units drop down list. Since the hyperfine
couplings (A/gf3) measured directly from the field swept continuous wave EPR spectrum are dependent upon the
g-value, it is far easier to determine A-values if the simulation employs frequency units as the g- and A-values
are then independent. Consequently, we have provided a units calculator, accessible from the main Tool bar to
convert Gauss and mT into units of frequency.



2.9 Fine Structure Interaction (S.D.S) (Figure 2)

The fine structure interaction (Figure 16) is only valid when the electron spin is greater than %2 and only
has Axial and Orthorhombic representations as it is a traceless tensor. D is the axial zero field splitting and E/D,
the rhombicity parameter can vary between 0 (axial symmetry) and 1/3 (thombic symmetry).
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Figure 16: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Second Order Fine
Structure Interaction Form.

In addition to axial and orthorhombic representations, the Fine Structure also has B4 (fourth order corrections)
and B6 (sixth order corrections). [12] If the B4 representation is chosen (Figure 17), then the terms b," and b,’

correspond to D and E, respectively. The units for the Fine Structure Interaction include MHz, GHz, 10“cm’
and cm’.



N Mal=sular Saphiz: [Ma Simulatian] A m-Feil BNEND
File Edit Project Simulation HMolecule Atom £:xszi Experiment  Log Help
FRFEE e e T(D e B |y V|
Bl = Project - it H
|— &1 4% Mo Simulation Atornic Hurber : 265 Description Iﬁ
. Atomic Mass: 55.85
—E =& Molybdenum Enzyme lentopes: 18
—E] *% Cytochrome C Electran Spin 5!2_.1'
% Fel
Iron
& M1 Spin Hamiltonian Yiew Matrixl
& ME
® M3 L Linewsidth I L Isotopes I L Position I
& M4
“e Fel-M1 4"  FElectron Zeeman I - Fine Structure I - Hyperfing I Quadrupole
g Fel-HZ
“g Fe1-I3 .
g Fel-ha Fine Structure MName I“
—&E “gMoco
L[ g Iron Sulfur Cluster Representation B4 =
—HE % Experiments
€. Continuous Wave 1 Units cm-1 —
€2 Hyscore 1
L —¢alog — B4
—E] &% C Radical
—HE =% Sample Parameter Value Vary  Minimum Maximum
L _3=*gmolecule 1
® H1 T
® Cl bg ID.SDDDD g o g g
“g C1-H1
B €% Experiments z I_’—
L& cantinuous wave 1 2 0-010000 | L | |
——<ZiLog
LB ¢ C Radical b?; ID-DDE&DDD g | g g
—HE g% Sample
|—EI“$MUIE:CUIE:1 121 ID'DDLEDDD g = g g
& H1
& C1 - b3 ID.DDQDDD : o g g |
“g C1-H1
—E % Experiments Fi TI
= | LTI | Simulation [ | omoo.oo

Figure 17: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Fourth Order Fine
Structure Interaction Form.

2.10 Quadrupole Interaction (I.P.I) (Figure 2)

The quadrupole interaction (Figure 18), a traceless tensor, is only valid when an isotope of an atom
contains a nuclear spin greater than Y2. This interaction only has Axial and Orthorhombic representations. The
quadrupole interaction is included in the calculation if it is active and valid (red tick on the interaction tab) and
may be toggled off/on through a middle mouse click on the tick. When it is inactive and valid (blue tick), the
parameters are written to the simulation file, but are not used in the calculation. If there is no tick on the tab,
then the interaction is invalid, as there are no isotopes which have a nuclear spin greater than V.

The principal components of the quadrupole tensor (P or Q) are given by

“4)
PX——P—n
Py:—P—O—r]
P = 2P



From Schweiger and Jeschke [8]:

a=¢e qQ/(41(21—1)h/21m)

P.=a(—1+n)
P =a(—-1-n)
Pz=2a
n =(PX—Py)/Pz ©)

hence

P(MoSophe) = a = ¢ qQ/ (41 (21—1)h/2m)
n(MoSophe) = —an =—-neqQ/l(41(21—1)h/2m)
(6)

and the units for the quadrupole interaction include MHz and 10“cm™.
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Figure 18: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Orthorhombic
Representation of the Quadrupole Interaction Form.
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2.11 Linewidth Parameters

Molecular Sophe currently contains only a single line width model for the simulation of continuous wave
EPR spectra, angular variation of g values, as described below:

2 2 2 72 2 2 52 2 2 42 2
o,= (o, g L+ o gl + o gl )]g (7)
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Figure 19: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Orthorhombic
Linewidth Parameter Form. Nuclear T,'s, and Euler angles are accessible by scrolling the window..

Representations in the Linewidth Parameter Form (Figure 19) include orthorhombic, axial and isotropic
symmetries. Units include MHz, 10* cm™ and nanoseconds (nsec), the latter being more appropriate for pulsed
EPR spectra. For pulsed EPR spectra we also include the Nuclear spin-spin relaxation time T,y. Addition of a
more a generalised linewidth model involving a distribution of spin Hamiltonian parameters and positional
coordinates (bondlengths and orientations) is forthcoming. The approach will be similar to that employed for
the D and E-strain linewidth model in the XSophe-Sophe-XeprView® computer simulation software suite.

2.12 Atom Isotopes

The Isotope Form (Figure 20) contains a list of the atoms isotopes and their natural abundance, nuclear
spin, if known, and the quadrupole moment if the nuclear spin is greater than V2.
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Figure 20: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Isotope Form.

Nuclei can be chosen by selecting the check box adjacent to the isotope. The abundance of an isotope can be
modified if the user requires the simulation of spectra in which the EPR active molecule contains an enriched
The user should ensure that the total abundance for all isotopes corresponds to 100%.
abundant isotopes can be selected by pressing the button, right hand bottom corner of the Form. A fictitious
spin (I=0) has been added to all atoms enabling a quick way of selecting an atom with (I=0). Note that the

isotope.

abundance of this isotope will have to modified in the Isotope Form.

2.13 Position Form

The atom's coordinates can entered through the Position Form (Figure 21). Since it makes no sense to
have mixed units for the atom's coordinates, the units for the atoms coordinates are defined in the Molecule Form
(Figure 11). The atom's coordinates can be optionally used to determine the asymmetric components of either

the hyperfine or exchange interaction matrices.
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Figure 21: Molecular Sophe Graphical User Interface showing the Explorer Tree and the Position Coordinate

Form.

2.14 Adding Bonds

Superhyperfine and Exchange interactions occur between an atom containing one or more unpaired
electrons and the nucleus of an atom with a non zero nuclear spin or another atom containing unpaired electrons,
respectively. In the graphical user interface these interactions are created through the Add Bond window (Figure
22) accessed either by a right mouse click on the Molecule Node, clicking the Bond Icon (Top menu) or through
the Molecule Menu. The Add Bond window allows the user to define the interaction (bond) between the atom
containing the unpaired electron(s) and the atom containing the nucleus. It is important that the atom containing
the unpaired electrons is identified through the left hand combo box (Figure 22). Inclusion of the dipole dipole
interaction can be chosen by selecting the check box.

(=) (€3
&tom From: Atom To: )

,:Ef'ergtmrﬁrgpm:, (EFergtrnanNuclear Spiny Figure 22: Molecular Sophe Graphical User Interface
Fol 1I T 1I showing the Add Bond window. Note the atom

containing unpaired electrons occurs in the left hand

_ _ combo box. In this example Fel is the atom containing
W Dinole-Dipale

] | Cancell

- -

unpaired electrons.
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Having chosen the dipole-dipole interaction, the user should ensure that the positional coordinates are entered for
each atom defined in the bond, in this case Fel and N1.

2.15 SuperHyperfine Interactions (S.A.I) (Figure 2)

Once the bond is created in the Explorer Tree then a left mouse click on the bond opens the
Superhyperfine Interaction Form (Figure 23). The representations and units for the superhyperfine interaction
are identical to those for the hyperfine interaction (Section 2.8).
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Figure 23: Molecular Sophe Graphical User Interface showing an orthorhombic Superhyperfine Interaction.

The only difference is that the dipole-dipole interaction can be switched off, on or from the Form by selecting
the check box. If the check box is selected then the internuclear distance and orientation is calculated from the
positional coordinates of both atoms and the anisotropic interaction is calculated subsequently and added to the
parameters. The superhyperfine interaction can be toggled off / on by clicking (middle mouse button) on the red
/ blue tick radio button on the superhyperfine tab.
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2.16 Exchange Interaction (S.J.S) (Figure 2)

The exchange interaction involves the interaction of two or more paramagnetic centres, for example the
[Fe,S,1*"™, [FesSq]™", [FesSa™"*"''™* (Figure 1). The total spin Hamiltonian for an exchange coupled system is
given by the sum of the individual spin Hamiltonians and the interaction Hamiltonian (Eqns 1 and 2
respectively). The isotropic exchange interaction involves the overlap of molecular orbitals, whilst the
anisotropic exchange interaction (dipole-dipole coupling) is a through space interaction. In the graphical user
interface, the user first adds a “bond” between two atoms containing one or more unpaired electrons (ie. Si, S,
>1%). Of course, in metalloproteins, this may be an interaction and not a real bond. Once the bond has been
created a left mouse click on the bond will open up the bond Form (superhyperfine and exchange interaction
tabs). Clicking on the Exchange Interaction Tab opens the exchange Form (Figure 24 , b and ¢). Currently there
are four representations (Isotropic, Anisotropic (Axial and Orthorhombic Symmetry) and Antisymmetric).
Given the spin Hamiltonian in Eqn. 2, a positive value of J;,, corresponds to antiferromagnetic coupling between
the two atoms and for inorganic chemists who are used to working with the Hamiltonian (H = -2J;,,* S;.S,, * is
used here to distinguish the two values), Ji,o* = -Jiso/2.
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Figure 24: Molecular Sophe Graphical User Interface showing (a) the Isotropic Exchange Interaction.
The anisotropic exchange parameters can either be added through the Anisotropic Representation (Axial - Figure

24 or orthorhombic) or calculated from the positional coordinates of the two atoms through the dipole-dipole
interaction, by toggling the Dipole-Dipole check box (red enabled).
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Figure 24: Molecular Sophe Graphical User Interface showing (c) the Antisymmetric Exchange Interaction.
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The antisymmetric exchange term (Eqn. 2, G,, S, X Sp) can be included by selecting the Antisymmetric exchange
representation (Figure 24 c), which includes Ji, and the principal components of the G matrix and three Euler
angles. Dipole-Dipole terms can be also included by selecting the Dipole-Dipole radio button (red is active).
This interaction has been found to be important for trinuclear copper(Il) systems where the orbitals containing
the unpaired electrons partially overlap.

2.17 Adding Experiments

Once the sample has been created, the user can now perform a range of experiments. The choice of
experiment is accessed through the Experiment Menu or by a right mouse click on the Experiment Node and
selecting an Experiment Type (Figure 25). As can be seen in Figure 25, the range of experiments include CW-
EPR, Pulsed EPR (FID, 2 Pulse ESEEM. 3-Pulse ESEEM, SECSY, HYSCORE, 2 Pulse Echo, MIMS and
Davies ENDOR) and Reports (Energy Level Diagrams, Transition Roadmaps and Transition Surfaces). The
ENDOR experiments (MIMS and DAVIES) are currently being developed. Multidimensional experiments can
also be performed by adding additional abscissas (Temperature, Microwave Frequency, Goniometer Angle and
Magnetic Field). Currently we have no means to visualise four dimensional data sets, thus orientational selective
HYSCORE measurements cannot be visualised as a single dataset. This can be overcome in the short term by
duplicating the HYSCORE Experiment (right mouse click on the HYSCORE Experiment and select Copy
Experiment) and adjusting the static magnetic field in the copied Experiment. This process can be repeated as
often as necessary.
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2.18 Experiment Form

The Experiment Form (Figure 26) contains the list of experiments available for selection. Individual
experiments can be included/excluded by selecting/deselecting the check box adjacent to the experiment option.

Each experiment also has a weighting which will be used when optimising spin Hamiltonian parameters from
multiple experiments.
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Figure 26: Molecular Sophe Graphical User Interface showing the Experiment Form.

The following sections describe three experiments: CW EPR, HYSCORE and Energy level Calculations.

2.19 Continuous Wave (CW) EPR Experiments

Once a CW EPR Experiment has been added to the Explorer Tree, the CW-EPR Experiment forms can be
viewed by a left mouse click on the CW EPR Experiment Node in the Explorer Tree. The Continuous Wave EPR
Experiment Form has Continuous Wave, Sophe, Spectra and Configuration Tabs. The Sophe, Spectra and
Configuration Tabs are common to all experiments and will be dealt with separately.

The Continuous Wave Form (Figure 27) allows the use to enter values concerning the field sweep (centre

field, sweep width and the number of data points), microwave frequency, detection mode and temperature. The
units for the field sweep parameters include Gauss, mTesla and Tesla and those for the microwave frequency are
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MHz, GHz and THz. The harmonic corresponds to the n" derivative spectrum, where n=0, 1 and 2, the first
derivative being the normal mode acquired on an EPR spectrometer using phase sensitive detection. Whilst
experimentally the phase of the EPR spectrum can vary anywhere between 0° and 180°, only the limits are really
useful at present. Setting the phase to 180° inverts the spectrum. Boltzmann populations for each energy level
are automatically included and consequently the temperature will affect the intensity of the EPR signal between
two different energy levels. For exchange coupled systems the magnitude and sign of Jiso may be obtained from
a variable temperature spectrum/simulation. Similarly, if the zero field splitting is larger than the microwave
quantum, then a variable temperature spectrum/simulation can provide the sign and magnitude of the axial zero
field splitting (D).
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Figure 27: Molecular Sophe Graphical User Interface showing the Continuous Wave Experiment Form and
specifically the Continuous Wave tab.

If the user selected a multidimensional CW EPR spectrum, for example multifrequency, variable
temperature experiment (Figure 28) then additional tabs are added to the CW EPR Experiment Form, namely,
Temperature and Frequency. These tabs allow the user to define the start and increment values for the particular
parameter and the number of data points in the additional dimension. The parameters in this tab, for example the
temperature tab, overides the temperature setting in the Continuous Wave tab. This also applies to the
microwave frequency and Goniometer Angle.
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Figure 28: Molecular Sophe Graphical User Interface showing the Temperature Form of a Multidimensional

Experiment.

2.20 Sophe Computational Parameters

The Sophe tab (Figures 29 and 30) allows the user to input various parameters required for the
computational calculation, define the SOPHE Grid (Section 3.1) and determine the transition probability
(selection rules to be used). In the Calculation Panel, matrix diagonalization is currently the only method
available for performing continuous wave and pulsed EPR simulations. The field segmentation algorithm
employed in the computational program (Sophe) requires the user to define the number of field segments where
matrix diagonalization will be employed. Whilst the number of field segments can usually be set to one or two,
sometimes sharp features (vertical lines) may be apparent in the spectrum and these arise from the presence of
multiple transitions within a segment. If this occurs then the number of segments should be increased.
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Figure 29: Molecular Sophe Graphical User Interface showing the upper part of the Sophe Tab within the CW
EPR Experiment Form.

Floquet Theory is often used to describe the evolution of a periodic time dependent semiclassical spin
Hamiltonian in magnetic resonance. The number of Floquet Segments and Floquet Harmonics are only used in
the simulation of Pulsed EPR experiments. The number of Floquet Segments refers to the number of segments
microwave pulses are divided into so that within each segment the time dependent spin Hamiltonian is 'assumed'
to be time independent. These segments are used to calculate the average Hamiltonian for the pulse. When the
number of Floquet Segments is set to zero, the representation is reduced to the rotating frame which is only
appropriate for species in which there is no significant electron spin state mixing, for example species containing
only a single unpaired electron.  For high spin and exchange coupled molecules, the number of Floquet
Segments should be greater than zero.

The SOPHE grid (Section 3.1) is defined by the number of orientations between the 'z' and 'x' global
coordinate system. The number of gamma steps, used in the simulation of pulsed EPR experiments, is used to
calculate the transition probabilities of the echo intensities. Since the Sophe interpolation scheme has not been

implemented into Molecular Sophe, the Sophe interpolation step is not currently used.

The Selection Rules are used to define the transition threshold for inclusion of transitions in the
simulation. Setting the selection rules to 'ALL' sets the transition threshold to 1.0, None sets it to zero and Some
is somewhere in between, which the user can define to only observe forbidden or allowed transitions. In
principle the Selection Rules should always be set to 'ALL'".
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Figure 30: Molecular Sophe Graphical User Interface showing the (b) lower part of the Sophe Tab within the
CW EPR Experiment Form.

2.21 Spectra Input/Output

Molecular Sophe employs a data directory to store all of the information associated with a particular
simulation. Apart from the input file for the computational programme, Sophe, ALL of the input and output
spectra are also stored in this directory. This simplifies the organization of simulations. The Spectra Form
(Figure 31) allows the import of an experimental spectrum into the Molecular Sophe data directory and the
export of simulated and experimental spectra from this directory. A title for the experiment can also be added
which is added to the resultant simulation spectrum. The user can also choose the filetype (Be3st and ESP
Bruker formats) of the spectrum to import into the data directory and the output file format (Be3st and ESP
Bruker formats, GNUPIlot, Image Plot, Postscript and Openlnventor).
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Figure 31: Molecular Sophe Graphical User Interface showing the Spectra Tab within the CW EPR Experiment
Form.

Apart from the Openlnventor file format which is specifically used for the visualization of transition
surfaces, ALL of the other file formats are generated when you run a simulation. You can change the output file
type and select View spectrum to see the results in a different format. Both the Bruker Be3st and ESP format
files are displayed within Bruker's XeprView" and the gnuplot file is displayed in a gnuplot X11 terminal
window. The Image (portable network graphics 'xxx.png' format) and postscript files are displayed in an
appropriate viewer defined in the preferences window. Typically the default viewers are the web browser
mozilla/firefox and ghostview, respectively and representative examples showing all displays can be seen in
Figure 32 on the next page.
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Figure 32: Spectral Outputs from Molecular Sophe. (a)
Bruker's XeprView® (or Xepr if available), (b)Gnuplot, (c)
Image plot (potable network graphics 'xxx.png'), (d) GhostView
(postscript viewer) and (e) Open Inventor Viewer (ivview).

Rotx  Roty

2.22 Resonator Configuration

The resonator Configuration Form (Figure 33) allows the user to choose: the Bruker spectrometer
resonator type; the orientation of the microwave magnetic field with respect to the external applied magnetic
field (By); the microwave power at 0 dB; the microwave magnetic field strength (B)); the radio frequency (RF)
power at 0 dB and the RF magnetic field strength (B,). Apart from the dual mode resonator (ER4116DM) which
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Figure 33: Molecular Sophe Graphical User Interface showing the Resonator Configuration Tab within the CW
EPR Experiment Form.

E-36



2.23 Pulsed EPR Experiment — Hyperfine Sublevel Correlated Spectroscopy (HYSCORE)

The HYSCORE Experiment Form (Figure 34) is accessible after having loaded a HYSCORE Experiment
(Section 2.17) and selected the HYSCORE Experiment Node from the Explorer Tree. The pulse sequence is
displayed in the HYSCORE Experiment Form (Figure 34). The HYSCORE Experiment (Figure 34) contains the
following tabs: HYSCORE, Sophe (Section 2.20), Spectra (Section 2.21) and Resonator Configuration (Section
2.22).
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Figure 34: Molecular Sophe Graphical User Interface showing the HYSCORE Tab within the HYSCORE

Experiment Form.

Within the HYSCORE tab the user can define the Pulse Length of the Tv2 and Tt pulses, (po and p2 respectively),
Delay times (dO, d1 and d2), Abscissa Times, Phase cycle, static Magnetic Field, the Microwave Frequency,
Attenuation and the Temperature of the experiment. Creation of the TV2 and Tt pulses is dependent upon, the
pulse length (p0 and p2), the microwave attenuation and the microwave magnetic field strength (B;) at 0dB. The
latter is defined in the Resonator Configuration Tab. The attenuation required to obtain a Tv2 flip angle with the
TU2 pulse length and B, can be obtained by selecting the Experiment Setup Toggle Button and running the
experiment. This will produce a a plot of attenuation versus echo intensity (Figure 35). The Position Qualifier
within XeprView® or gnuplot can be used to determine the power associated with the maximum echo intensity.
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Figure 35: Gnuplot output showing the result from a Setup Experiment. Attenuation for ©/2 pulse = 11dB.

Currently the HYSCORE is monitored at a single point (detection gate delay dO), rather than integrating over a
detection gate. 'dx' and 'dy' define the time increments in the two dimensions and 'sx' and 'sy' correspond to the
number of data (time) points calculated. Whilst the pulse sequence assumes 'dx' and 'dy' are identical as is often
the case experimentally, this condition is not required in the Sophe software. The units for both 'dx' and 'dy' are
selected from the Units Menu for 'dx'. The HYSCORE tab is a scrollable window and as such all of the
parameters may not be visible upon selecting the tab. This is the case in Figure 39 where the static magnetic
field and temperature are hidden but can be entered by scrolling the window. The remaining parameters
(magnetic field and temperature) and the parameters in the other tabs have been defined previously in the CW
EPR Experiment Form (Sections 2.20-2.22).

2.24 Pulsed EPR Experiment — Orientation Selective HYSCORE

Orientation selective experiments involve performing a pulsed EPR experiment, such as HYSCORE as a
function of orientation (magnetic field). The orientation selective HYSCORE Experiment will provide a four
dimensional data set from which the compete hyperfine matrix for the remote nucleus can be determined.
Subsequently the internuclear distance and orientation of the nucleus from the electron spin can be determined
from the anisotropic components of the hyperfine matrix. Computer simulation of an orientation selective
HYSCORE Experiment, or indeed any other pulsed experiment involves adding a pulsed experiment and
choosing Magnetic Field as the second abscissa. Unfortunately, XeprView® cannot currently visualise one or
more four dimensional data sets. The Orientation Selective HYSCORE Experiment Form is shown in Figure 36
and the only difference from that of the HYSCORE Experiment Form is the addition of a Magnetic Field Tab
which allows the initial field, increment field and the number of data points to be added (Figure 36).
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Figure 36: Molecular Sophe Graphical User Interface showing the Orientation Selective HYSCORE
Experiment.

2.25 Pulsed EPR - MIMS ENDOR

The MIMS Electron Nuclear Double Resonance (ENDOR) Experiment Form (Figure 37) is accessible
after having loaded a MIMS ENDOR Experiment (Section 2.17) and selected the MIMS ENDOR Experiment
Node from the Explorer Tree. The MIMS ENDOR Experiment is acquired by recording the amplitude versus
the frequency of the radiofrequency (RF) pulse as shown in the pulse sequence within the MIMS ENDOR
Experiment Form (Figure 37). The MIMS ENDOR Experiment (Figure 37) contains the following tabs: MIMS
ENDOR, Sophe (Section 2.20), Spectra (Section 2.21) and Resonator Configuration (Section 2.22). Within the
MIMS ENDOR tab the user can define the microwave Pulse Length of the 172 pulse (po), the Pulse length of the
radio frequency Tt pulse (rf), Delays, the range of radio frequencies (Abscissa 1 Radio Frequency), Phase Cycle,
the static Magnetic Field, the Microwave Frequency, Attenuation, Radio Frequency Attenuation and the
Temperature of the experiment. Creation of the microwave TU2 pulse is dependent upon the pulse length (p0),
the microwave attenuation and the microwave magnetic field strength (B;) at 0dB. Creation of the radio
frequency T pulse is dependent upon, the pulse length (p0), the radio frequency attenuation and the radio
frequency magnetic field strength (B,) at 0dB. B, and B, are defined in the Resonator Configuration Tab.
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Figure 37: Molecular Sophe Graphical User Interface showing the MIMS ENDOR Tab within the MIMS
ENDOR Experiment Form.

The microwave attenuation required to obtain a TV2 flip angle with the TV2 pulse length and B, can be
obtained by selecting the Experiment Setup Toggle Button and running the experiment. This will produce a plot
of microwave attenuation versus echo intensity (Figure 35). The Position qualifier within XeprView® or gnuplot
can be used to determine the power associated with the maximum echo intensity. Currently the MIMS ENDOR
is monitored at a single point (detection gate delay d0), rather than integrating over a detection gate.

The MIMS ENDOR tab is a scrollable window and as such all of the parameters may not be visible upon
selecting the tab. This is the case in Figure 37 where the magnetic field strength, microwave frequency and
attenuation, radio frequency attenuation and temperature are hidden but can be entered by scrolling the window
(Figure 38). The remaining parameters (magnetic field and temperature) and the parameters in the other tabs
have been defined previously in the CW EPR Experiment Form (Sections 2.20-2.22).
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Figure 38: Molecular Sophe Graphical User Interface showing the MIMS ENDOR Tab (scrolled to the bottom
of the window) within the MIMS ENDOR Experiment Form.

2.25 Reports - Energy Level Diagrams

Once an Energy Level Experiment has been added to the Explorer Tree, the Energy Level Experiment
forms can be viewed by a left mouse click on the Energy Level Experiment Node in the Explorer Tree. The
Energy Level Experiment Form has Energy Level, Sophe (Section 2.20), Spectra (Section 2.21) and Resonator
Configuration (Section 2.22). Within the Energy Level Tab (Figure 39), the use can enter values concerning the
field sweep (centre field, sweep width and the number of data points), Euler Angles (orientation of the magnetic
field), microwave frequency, and temperature. The units for the field sweep parameters include Gauss, mTesla
and Tesla and those for the microwave frequency are MHz, GHz and THz. Boltzmann populations for each
energy level are automatically included and consequently the temperature will affect the intensity (and presence
or absence) of the EPR signal between two different energy levels. The resultant energy level diagram showing
energy levels (blue) as a function of magnetic field and the allowed transitions (transitions with a probability
greater than the threshold) shown in red can only be viewed using Gnuplot, Image Plot or Postscript viewers.
The choice of format can be chosen through in the Spectra tab. (Section 2.21).
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Figure 39: Molecular Sophe Graphical User Interface showing the Energy Level Experiment Form and
specifically the Energy Level Tab.

2.26 Main Menus

The Main Menu is shown in Figure 40 and the following Table shows all of the Menu, Sub Menu items
and explains their functions.

File Edit Project Simulation Molecule #igss st Experiment Log Help

Figure 40: The main menu in the Molecular Sophe Graphical User Interface.

The Main Menu items can be accessed by placing the mouse over the particular option and performing a left
click or, alternatively, pressing the <Alt> key in conjunction with the underlined letter in the Menu Item. For
example the File menu can be accessed by pressing <Alt>f.
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Main Menu Item SubMenu Item Explanation
File XeprView® Start Bruker's XeprView® Software
Nameclean Clean up the Orbacus Corba Nameserver
Exit Exit Molecular Sophe
Edit Edit Preferences Modify choice of external programs and CORBA
settings
Save Preferences Save user preferences
Hide Tool Bar Hide (and show) the Tool Bar
Hide Control Bar Hide (and show) the Control Bar
Hide Message Bar Hide (and show) the Message Bar
Load User Preferences Load user preferences
Load System Preferences |Load system wide preferences
Project New Create a new project
Save Save the current project
Load ... Load a project from disk
Delete Delete the current project
Add Simulation Add a simulation to the project
Delete Simulation Delete a simulation from the project
Simulation Add Add a simulation
Load Load a simulation
Save Save the current simulation
Delete Delete the current simulation
Copy Duplicate the selected simulation
Print Print the current simulation input file
Run Run the current simulation
Stop Stop the current simulation
Lock Lock the current simulation
Molecule Add Add a new molecule
Paste Greyed out, NOT currently supported
Clear All Delete all molecules including all atoms and bonds
Delete Delete current molecule including all atoms and bonds
Cut Greyed out, NOT currently supported
Copy Duplicate Molecule
Add Atom Add atom to the molecule
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Main Menu Item

SubMenu Item

Explanation

Paste Atom

Greyed out, NOT currently supported

Clear Atoms

Remove all atoms within the molecule

Add Bond Add a bond (interaction) between two atoms
Clear Bonds Remove all bonds between atoms
Atom Only Active when the atom Node is selected
Delete Delete atom
Cut Greyed out, NOT currently supported
Copy Duplicate atom
Bond Only Active when the bond Node is selected
Delete Delete bond
Experiment Add Add an experiment
Paste Greyed out, NOT currently supported
Clear All Remove all experiments
Delete Delete experiment
Cut Greyed out, NOT currently supported
Copy Duplicate experiment
Log Clear Clear both Sophe and MoSophe log windows
Print Print both Sophe and MoSophe log windows
Save Save both Sophe and MoSophe log windows to disk
Help Click for Help NOT Currently Supported
Overview Displays Product Information
Index NOT Currently Supported
Keys NOT Currently Supported

Keys and Shortcuts

NOT Currently Supported

Product Information

Displays name of the binary executable

Manual

Manual for Molecular Sophe
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2.27 Tool Bar

The Tool Bar (Figure 41) provides quick access to some common tasks in building the project.

o Wl

it e e O & 9 @|

Figure 41: The Tool Bar within the Molecular Sophe Graphical User Interface.

The buttons left to right perform the following functions:
« Load a project from disk,
« Add a simulation to the project,
Remove the molecules, atoms and bonds from the sample,
« Add a molecule,
+ Add an atom,
Add a bond,
« Remove all experiments,
« Add an experiment,
A Generic delete function being able to delete the currently active Node in the Explorer Tree,
« New simulation,
« Load simulation from disk,
Save simulation to disk,
«  Print the simulation using the printer defined in the preferences dialog,
«  Start the XeprView® software,
Units conversion calculator and
«  The manual.

2.28 Control Bar

The Control Bar (Figure 42) is used to start, pause and stop simulations. Once the simulation has started
the simulation is locked so that the parameters within the simulation cannot be altered.

R ‘ [ | | Simulatian 00:00.00 H

Figure 42: The Control Bar within the Molecular Sophe Graphical User Interface.

The components of the control bar from left to right include a toggle button which can lock and unlock the
simulation, stop, pause and start buttons and a timing bar. Upon starting the simulation, the colour of the start
button changes to green. The Timing Bar (Figure 42) shows the state (grey, red and green) of the simulation. A
grey timing bar indicates the simulation has not been started and a red timing bar indicates that the simulation
has completed. A green timing bar indicates the percentage completion of a particular isotope combination; ie,
if the simulation has atoms with multiple isotopes, the green timing bar will start multiple times.

There is a problem with threading in the X-server which can sometimes block the update of the timing bar,
which can be readily seen by the timing bar stopping. If this occurs simply repress the start button and the
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timing bar will be updated.

3.0 Sophe - Computational Code

Sophe is a sophisticated computer simulation software programme written entirely in C++ employing a
number of innovative technologies including; the SOPHE partition scheme, a field segmentation algorithm, the
mosaic misorientation line width model, and spectral optimisation (under development). In conjunction with the
SOPHE partition scheme, the field segmentation algorithm [22-25,35] and the mosaic misorientation linewidth
model [24,26] greatly increase the speed of simulations for most samples. Sophe has been completely rewritten
in order to incorporate both continuous wave and pulsed EPR simulations. There are versions for both 32 bit
(ix86; x=3.,4,5,6) and 64 bit (x86_64) platforms, the latter running significantly faster.

The simulation of a randomly oriented EPR spectrum involves integration over a unit sphere (Eq. (8),
reproduced below) which is performed numerically by partitioning a unit sphere and calculating the resonant
field positions and transition probabilities at all of the vertex points.

™ T N N
S(B,vC)ZCJ' f > >0 |ul.j2f[vc— v,(B) , o, | dcos 6 do¢
0=0 ¢ =0 i=0 j=i+1
)

3.1 Sophe Grid

Whilst a number of different partition schemes have been reported in the literature for performing the
numerical integrations in Eqn. (9), including the igloo [36-38], triangular [39], spiral [40], and a triangular
arrangement with octahedral symmetry [41], Molecular Sophe uses a partition scheme involving spherical
triangles [35]. The SOPHE partition scheme [35] allows any portion of the unit sphere (60J[0, T72], @J[@;, @]
or 80[ 12, 11, @[, ®]) to be partitioned into triangular convexes. For a single octant (61[0, T¥2], @[O0, Tt
/2]) the triangular convexes can be defined by three sets of curves

©))
where N is defined as the partition number and gives rise to N+1 values of 8. Similar expressions can be easily

obtained for 80 172, 10, @[, ¢]. A three dimensional visualisation of the SOPHE partition scheme is given
in Figure 43b. And the triangular grid resembles the roof of the famous Sydney Opera House (SOPHE).
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WL

Figure 43: A schematic representation of the SOPHE partition scheme. (a) Vertex points with a SOPHE
partition number N = 10; (b) the SOPHE partition grid in which the three sets of curves are described by Eq. (9).
(c) Subpartitioning into smaller triangles can be performed by using either Eq. (9) or alternatively the points
along the edge of the triangle are interpolated by the cubic spline interpolation method [35] and each point inside
the triangle is linearly interpolated three times and an average is taken.

In the SOPHE grid there are N curves in each set with the number of grid points varying from 2 to N+1
in steps of 1. In order to produce simulated spectra of high quality, the unit sphere is often required to be finely
partitioned, in other words, a large number of vertex points are required to reduce computational noise which is
often observed when the spin Hamiltonian parameters are highly anisotropic and the linewidths are small. Each
triangle in Figure 43 can be easily subpartitioned into smaller triangles, referred to as tiny triangles. In Figure
43c, a selected triangle is further partitioned into 81 tiny triangles with a subpartition number N=10. The grid
formed in such a subpartition can still be described by Eq. (9). In this particular case, 0 is stepped in a smaller
step of TV(2(N-1)( M-1)) from 8= 45° to 8 = 54°, the two corresponding curves which bound the triangle
(Figure 43c). A similar process is applied to curves in sets 2 and 3. Alternatively, various interpolation schemes
may be used to generate finer grids for simulating randomly oriented EPR spectra [39, 40, 42]. In 1995 we
described the highly efficient SOPHE interpolation scheme [35].

The advantage of the SOPHE partition scheme over other schemes (igloo [36-38], triangular [39], spiral
[40] and a triangular arrangement with octahedral symmetry [41]) is that it allows the implementation of
interpolation schemes, such as the SOPHE interpolation scheme and the mosaic misoritentaion linewidth model
which reduce the number of matrix diagonalizations required to eliminate computer noise. Since matrix
diagonalization is an N’ process, where N is the rank of the matrix, reducing the number of matrix
diagonalizations leads to significant reductions in the computational time (see below). In addition, the SOPHE
grid can be described by three analytical expressions (Eqn. (9)) which are only dependent upon a single
parameter, the partition number.
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3.2 Calculation of Resonant Field Positions

The very nature of EPR spectroscopy as a field-swept technique imposes a computational challenge
to computer simulation of randomly oriented spectra. In essence, during an EPR experiment, the spin system
under investigation is constantly modified through the Zeeman interactions as the magnetic field is swept. In a
general situation where two or more interactions have comparable energies, the search for resonance field
positions is not a trivial task as the dependence of the energies of the spin states on field strength (Bo) can be
very complex. The complication involved is best manifested by the presence of multiple transitions between a
given pair of energy levels.

3.3 Brute Force - Matrix Diagonalization and Field Segmentation Algorithms

A number of search schemes have been used in the full matrix diagonalization approach for locating
resonant field positions [19, 43-46]. Generally, they can be grouped into two categories. In category I, the
resonant field position is searched independently for every transition. Among the schemes belonging to this
category, the so-called iterative bisection method is the safest but probably the most inefficient method [16].
Other more efficient methods such as the Newton-Raphson method have also been used [19]. In general, these
search schemes are time-consuming as a large number of diagonalizations are normally required. The search
schemes belonging to category Il may be called segmentation methods. In these schemes, the field sweep range
is divided equally into k£ segments and for each segment the whole energy matrix is diagonalized once for the
centre field value of that segment. Thus only k diagonalizations are performed for each orientation. A
perturbation theory is then employed for determining the presence of a transition in each segment. This search
scheme is still limited to situations where in each segment there is no more than one possible transition.
However, if k is not too large, the chance of having two resonances in a single segment is rare. Reijerse et al. [43]
use a first-order perturbation approach for exploring transitions in each segment. However, from our experience,
first-order perturbation theory cannot be guaranteed to produce resonance field positions with satisfactory
precision. In Sophe we have adopted the second-order perturbation theory [47], where for each orientation on the
SOPHE grid the field range is divided into a number of intervals. Matrix diagonalization [48] is performed once
in each interval, and second order perturbation theory is then employed to locate the resonant field positions
within the interval. We have found that this approach has proven to be efficient and reliable for locating the
resonance field positions in field-swept EPR spectra and can also deal with complicated situations where
multiple transitions or looping transitions are present. A saving factor in the segmentation method lies in the fact
that full matrix diagonalization is only performed k times irrespective of the number of transitions involved. By
contrast, in the other schemes, a few diagonalizations are required for each transition and for large spin systems
this number can become very large. The precision of the resonance field positions normally depends on the
segment number k as well as on the spin system. For S=1/2 spin systems a value of 2 for the segment number is
usually suitable, but for high spin systems where the linewidth is narrow and the magnetic field sweep is large
then larger values are required. Simulations can be performed with different segmentation numbers providing an
easy test of precision and also to test whether apparent resonances are noise or real.

3.4 Mosaic Misorientation Linewidth Model

When the line width is small compared to the anisotropy of the system it is necessary to integrate over
a large number of orientations to avoid simulation noise in the simulated spectrum. This increases the
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computational time considerably. The SOPHE grid and Interpolation schemes were developed as a way to
overcome this problem. A new approach based on the mosaic misorientation linewidth model [24, 49] has
recently been developed (Figure 44). In the mosaic misorientation linewidth model a Gaussian distribution of
molecular geometry axes about an average crystal c-axis is assumed. In the current implementation the partial
derivatives of the eigenvalues with respect to a rotation about the x and y axes are calculated using first order
perturbation theory.

(a) (b)

Figure 44: Mosaic misorientation linewidth model.

The contribution of a Gaussian distribution, of half-width A8, to the linewidth can then be calculated with
the following equation.

OE. O0E "’
c’=(A0 B + (A0 5y E. =E — E.
" 00 00 g i i
. (10)

In the simulation of powder spectra each point in the SOPHE grid is considered to be a microcrystallite
with a Gaussian distribution of orientations, A8 (Figure 44a), such that there is an overlap between adjacent grid
points (Figure 44b).

Ag=— "
4(N-1) an

At turning points in the spectrum the partial derivatives of the eigenvalues and hence g,, are zero and the
linewidths are determined by other contributions. At other orientations where the resonant field varies strongly
with orientation the line widths will be broadened (smoothed). This model simulates an EPR spectrum where the
important features, the turning points, are resolved in a significantly reduced time. Increasing N, the number of
bands in the SOPHE grid, will lead to a convergence to the 'true' spectrum. For a large number of spin systems,
N can initially be set to 20. The mosaic misorientation linewidth model can be contrasted with interpolation
schemes by considering it an extrapolation method.

E-49



3.5 A Comparison of Brute Force Matrix Diagonalization and Mosaic Misorientation

An example demonstrating the efficiency of the SOPHE partition scheme in conjunction with the SOPHE
interpolation scheme and the mosaic misorientation linewidth model is shown in Figures 54a-d where we have
calculated a randomly oriented spectrum for a high spin thombically distorted naturally abundant Cr(IIl) ion for
which an appropriate spin Hamiltonian is:

H =g B-S + D[Si—%S(Sle)] + E(S2 — 8?)

y

+ S.AL — g BBI (12)

The spin Hamiltonian parameters employed were g. = 2.00, D = 0.10 cm™, E/D = 0.25, A, =120.0, A, =
120, A, = 240.0 x 10" cm”. A narrow line width was chosen (30 MHz) in order to demonstrate the high
efficiency of these schemes. The unit sphere has to be partitioned very finely in order to produce simulated
spectra with high signal-to-noise ratios when there is large anisotropy and the spectral linewidths are narrow.

The simulated spectra employing brute force matrix diagonalization with N=18 and N=400 are shown in
Figures 45a and 45b respectively. Including the SOPHE interpolation scheme with a partition number N=18
(Figure 45¢) dramatically improves the signal to noise ratio with a considerable reduction in computational time.
Application of the mosaic misorientation line width model (Figure 45d) also dramatically improves the signal to
noise ratio and is computationally faster than the SOPHE interpolation method as interpolation has many
overheads. Spectra in Figure 45a-d were calculated using the XSophe-Sophe-XeprView® computer simulation
software suite. Clearly the mosaic misorientation linewidth model is the fastest approach and now replaces the
brute force matrix diagonalization approach within the computational programme Sophe and is also preferred
over SOPHE interpolation. An identical spectrum is to Figure 45d is found using Molecular Sophe except the
computational time was slightly longer 1.49 vs 0.79 sec. Running the same simulation on a 64bit notebook
(Athlon XP3400) notebook using Mandriva Linux 2006 as the operating system produced a computational tome
of 0.94 sec, a factor 15 to 2 times faster on the 64 bit notebook.
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Figure 45: Computer simulations of the powder EPR spectrum from a naturally abundant Cr(III) spin system
(S8=3/2; 1=3/2) which demonstrates the efficiency of the SOPHE interpolation scheme. (a) Without the SOPHE
interpolation scheme, N=18, (b) Without the SOPHE interpolation scheme, N=400, (c) With the SOPHE
interpolation scheme, N=18 and (d) With the mosaic misorientation linewidth model, N=18. Computational
times were obtained on both a Linux PC (AMD Athlon XP2400+ CPU with the Mandrake 9.1 operating system)
and an SGI supercomputer (MIPS R14K CPU with the IRIX 6.5.20 operating system), the latter times are given
in brackets.v=34 GHz; field axis resolution: 4096 points; an isotropic Gaussian lineshape with a half width at
half maximum of 30 MHz was used in the simulation.
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3.6 Linewidth Models

At present only a single linewidth model, namely the angular variation of g-values, has been incorporated
into Sophe
(13)

v

o’ = (O‘i gi li + O'i g2V li + Ufgfli)/gz

where g* = g’ 1 +¢g° 17 +¢g’1’, a's (i=x,y,2) are the input linewidth parameters and l,'s (i=x,y,z) are the
direction cosines of the magnetic field with respect to the principal axes of the g matrix.

A similar approach to that used for the distribution of zero field splittings in XSophe [23,24] will be
implemented for all spin Hamiltonian and structural parameters.

3.7 Visual Aids for Analysing Complex CW EPR Spectra

Molecular Sophe provides three tools (Energy level Diagrams, Transition Roadmaps and Transition
Surfaces) for aiding the analysis of complex CW EPR spectra. The Energy Level Diagrams and Transition
Roadmaps can be displayed using Gnuplot, Ghostview (postscript files) or through an image viewer (portable
network graphics files) such as a web browser (Netscape or Mozilla). The transition surface scene graphs are
plotted with an Openlnventor scene graph viewer (ivview) using cartesian coordinates, which is extremely useful
for highly anisotropic spin systems such as high spin systems (for example Fig 4e). This requires the minimum
field to be set to zero which is defined as the origin. In contrast, for nearly isotropic systems, it is important to
examine a single transition at a time. The choice of transitions can be made through the Transition
Labels/Probabilities window and either setting the transition threshold or defining the transitions.

3.8 Pulsed EPR Simulations

The simulation of pulsed EPR spectra involves calculating the evolution of an observable (O Eq. 14)
during the microwave pulses, radiofrequency pulses and free evolution periods that comprise the pulse sequence.
The signal in an arbitrary pulsed EPR experiment can be simply described in superoperator notation. [8,50]

(0)=(p,IR.R,...R |O) (14)

In most experiments the initial density matrix (p,) is the equilibrium density matrix (p) with diagonal elements
given by the Boltzmann population of the energy levels in the eigenbasis of the static Hamiltonian:

—E,
kT
e

i o AT (15)
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The density matrix for a four level spin system (S=1/2) is :

and the corresponding superbra is:

<P|=[p1. P Py pzz}

The detection operator (observable) in Eqn. 14 is given by:

0: 011 012
021 022
and the corresponding superket is:
011
o
0)=|"
012
022

(16)

a7

(18)

(19)

The transverse magnetization (M,, M,) are proportional to S,, S,, respectively and are determined by the g value
in the x-y plane, the microwave power and other experimental factors.

In general a pulse sequence is comprised of one or more microwave pulses, free evolution periods and possibly
radio frequency pulses. For example the pulse sequences for the HYSCORE and MIMS ENDOR experiments
are shown in Figures 34 and 37, respectively. Each of these components can be be mathematically described by a

superpropagator (IA{ ) (Egn. 14) which in turn is derived from a direct product of the propagators:

o -1
R=RQ®R
*
1° 11 11
* * *
R
5 11 12 11 21 1 12 11
R= ® =
* * *
21 22 12 22 21 11 21
*
12712 12

22

22

22

(20)

Coherence transfer pathways provide a way of visualising the transfer of magnetisation during a pulse

sequence and in general an element of the density matrix undergoes the following transformation:

E-53



R n n
pzj_’z Z Rile;f Pu (21)

(=0 k=0

In the eigenbasis of the static Hamiltonian the superpropagator for each free evolution period is diagonal. The
time dependence of each element in the density matrix (p) is simply given by:

E:
—2imE, 1
Py—¢€ P 22)

During the microwave pulses the Hamiltonian is no longer time-independent and contains a term oscillating at
the microwave frequency. Using Floquet theory [51] the superpropagators for the microwave pulses can be
expressed as a Fourier series. For many spin systems the series converges rapidly and can be truncated at a low
number of harmonics.

n

R(t): z Rme—imw ,,,,, t (23)
Pulsed EPR experiments typically involve phase cycling where the experiment is repeated with different
combinations of the phases of the microwave pulses. It can be seen that for a single pulse the phase cycle [0,TT
filters out all odd Floquet harmonics while the phase cycle [0,-1] filters out all even Floquet harmonics.

A —inlw t+m) A —inw t
Re ™ T=(—1)R ¢

n n

(24)

The use of phase cycling reduces the number of coherence pathways that must be followed. This can be further
reduced if we include the condition that the initial Fourier index is O at equilibrium and at the time of detection
must be given by p=+x1. This is shown in Figure 46 for a two pulse sequence. The first pulse has Ap=+1 the
second pulse Ap=-2. One pathway though the density matrix (in superbra notation) is shown in Figure 46. Each
coherence pathway yields a peak which is then added to the spectrum. The spectrum may have one or more
frequency dimensions depending on how the time periods are incremented in the experiment. The final spectrum
is obtained by averaging over all pathways. For powder spectra the integration over the orientational disorder
using the SOPHE grid is also performed. [35]

The above approach to the simulation of pulsed EPR spectra allows the simulation of pulsed EPR
spectra from not only isolated paramagnetic samples containing a single unpaired electron but also from samples
containing multiple unpaired electrons, for example high spin Fe(Ill) centres found in cytochromes and non
heme iron proteins and coupled centres, such as the type III copper containing enzymes and the binuclear
metallohydrolyases.
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Figure 46: A schematic diagram of a pulsed EPR sequence and the evolution of the density matrix which is
traced through each of the microwave pulses and free evolution periods. One coherence pathway from the
equilibrium density matrix through to the detection operator is indicated.

4.0 Molecular Sophe — Examples
4.1 CW-EPR Spectroscopy

Reaction of Tp*Mo"'SCl, with a variety of phenols and thiols in the presence of triethylamine
produces mononuclear, thiomolybdenyl complexes Tp*Mo'SX, [Tp* = hydrotris(3,5—dimethylpyrazol-1-
ylborate; X = 2-(ethylthio)phenolate (etp), 2—(n-propyl)phenolate (pp), phenolate; X, = benzene-1,2-dithiolate
(bdt), 4-methylbenzene-1,2-dithiolate (tdt), benzene-1,2-diolate (cat)] [51].

Figure 47: X-rayCrystal Structure of Tp*Mo"S(cat)

E-55



Multifrequency (S-, X-, Q-band) EPR spectra [52] of
the complexes and selected molybdenyl analogues
were acquired at 130K and 295K and yielded a spin
Hamiltonian of C; symmetry or lower, with
2,<g,<gux<g. and A,, >Ayy~Ayy, and a non-
coincidence angle in the range of P=24-39°. The
weaker TT-donor terminal sulfido ligand yields a
smaller HOMO-LUMO gap and reduced g-values
for the thiomolybdenyl complexes compared with
molybdenyl analogues. Multifrequency EPR,
especially at S-band, was found to be particularly
valuable in the unambiguous assignment of spin
Hamiltonian parameters in low symmetry.

Crystal field description of spin Hamiltonian
parameters.  Large non-coincidence angles
can be explained by a model in which extensive
mixing among Mo 4d orbitals takes place.
Although LMCT and MLCT states of
appropriate symmetry may also contribute, for
transition metals the dominant contribution to
gy 1s usually Ag;_d , which arises from
transitions within the Mo 4d manifold. In C,
symmetry with a 0 mirror plane, in which the
X axis lies between the metal-ligand bonds (),
the dy>.,%, dy, and d,” orbitals transform as A’
and the dy, and dy, orbitals transform as A”.
The metal-based antibonding wavefunctions are
therefore:

Wl =afd,. , +bd,, +cd . H

vz =BHudy, tbhd ., +cd E
W =yHyd.+bd . . +cd,H
Wiy o= 5[ a,dyy +b4de]

)a';D = 5[ asdyz + bsdxyl

| T T T T
[
/ |
a
(il T _'-H_FP'J il ‘_
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Figure 48: Multifrequency EPR spectra of Tp*Mo"S(cat)
at 130K. (a) S-band, (c¢) X-band, (e) Q-band, (b,d,e)
Computer simulated spectra. g,=1.9646, g,,=1.9595,
2,=1.8970, A,=30.0, A,,=29.0, A,,=67.5 x10*cm, a=0°,
B=34.5°% y=0°

where, by definition, a,> b,,c, (g=1,2,...). Here covalency appears only implicitly through the metal-centered

orbital coefficients ,...,€. Since the molecular X and Y axes are placed between the metal-ligand bonds, the

. . a'll
ground state wavefunction is ¢/ oy -
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Figure 49: DFT Calculation (ORCA) of the LUMO for Tp*Mo"S(cat) and the orientation of the principal

components of he g and A matrices [52].

Figure 50: Computer smulation of the EPR spectrum of
3,4-protocatechuate dioxygenase with cyanide and **N-nitric
oxide [53]. g: = 2.050, g, = 2.001, gs = 1.9535; N-NO A; =
419, A; = 91, 45 MHz; “N-protein A = 23 MHz (isotropic);
line widths at gi25 = 4.25, 2.25, and 8.77 mT; microwave
frequency = 9.2158 GHz; 2 field partitions; and 20 SOPHE
grid segments.

Intensity

3108 3150 3200 32508 3300 33508 3400 34508 3500
Hagnetic Field G

Figure 50: Computer simulation of a nitroxide diradical. gio
=2.00, Aix, = 15.4 x 10* cnr? for each site, Jo = 5.3 X 10“cmr
1,9.6 GHz, 2 field partitions; and 20 SOPHE grid segments.

Intensity

L I L I L
3408 3418 3428 3438 3448 3458 3468
Hagnetic Field G
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4.2  Pulsed EPR Spectroscopy

Nitrogen HYSCORE

2600
2000

1500

" Figure 51: Nitrogen HYSCORE spectrum.
500

i = 2.0, Ai=5 MHz, A = 3MHz, P=-1 MHz,
T2N iso = 0.1 MHz

Frequency [MHz]

-10 -5 0 5 10
Frequency [HHz]

Figure 52: Examples of Proton
HYSCORE spectra.
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Appendix A. Methods and basis sets

A quantum-mechanical calculational model can be uniquely specified by identifying

(1) the method of approximation and (ii) the orbital basis set that underlies the model. The
model is conventionally specified by a keyword label of the form method/basis, where
method and basis are suitable identifying abbreviations or acronyms. Simple examples are
“RHF/6-31G*” (for the RHF restricted Hartree—Fock method and the 6-31G* basis set) or
“B3LYP/6-311+ +G**” (for the B3LYP hybrid density functional method and the
6-3114 4+G** basis set). In this appendix we briefly describe the principal method and
basis types that are now well established in the literature,! particularly as implemented in
the Gaussian program.? Consult notes 1 and 2 for background information and original
references.

Methods

Quantum-mechanical approximation methods can be classified into three generic types:
(1) variational, (2) perturbative, and (3) density functional. The first two can be
systematically improved toward exactness, but a systematic correction procedure is
generally lacking in the third case.

Variational methods

Variational approximation methods are identified by the form of the variational trial
function, particularly by the number and types of Slater determinants.

The simplest approximation corresponds to a single-determinant wavefunction. The
best possible approximation of this type is the Hartree—Fock (HF) molecular-orbital
determinant. The HF wavefunction is constructed from the minimal number of occupied
MOs (i.e., N/2 for an N-electron closed-shell system), each approximated as a variational
linear combination of the chosen set of basis functions (vide infra).

To distinguish between closed-shell and open-shell configurations (and determinants),
one may generally include a prefix to specify whether the starting HF wavefunction is of
restricted closed-shell (R), restricted open-shell (RO), or unrestricted (U) form. (The
restricted forms are total 52 spin eigenfunctions, but the unrestricted form need not be.)
Thus, the abbreviations RHF, ROHF, and UHF refer to the spin-restricted closed-shell,
spin-restricted open-shell, and unrestricted HF methods, respectively.

More accurate multi-determinant “configuration-interaction” (CI) wavefunctions are
described by specifying the types of substitutions (“excitations™) from the starting HF

710
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determinant, replacing sets of occupied MOs with corresponding virtual MOs. The
substitutions may include all singles (S), doubles (D), triples (T), or quadruples (Q),
leading to designations such as CIS (inclusion of all single excitations), CISD (all single
and double excitations), and so forth. Such wavefunctions are termed “‘single-reference”
type, because all allowed substitutions originate from the starting HF configuration using
MOs optimized for this configuration. The spin restrictions on these CI wavefunctions can
be specified by prefixes analogous to those for the reference HF configuration; for
example, the abbreviations RCISD, ROCISD, and UCISD specify restricted closed-shell,
restricted open-shell, and unrestricted CISD, respectively.

“Multi-reference” wavefunctions can be formed by choosing two or more reference
configurations and allowing the MOs to reoptimize self-consistently for the
multi-configuration form. An important special case is the CASSCF (complete
active-space self-consistent-field) method, in which the set of reference configurations is
generated by including all excitations from a chosen “active space” of occupied and
virtual MOs. Another special case is the GVB (generalized valence-bond) method, in
which reference configurations are selected to match the spin-pairing pattern of a chosen
valence-bond structure. Further aspects of multi-reference variational wavefunctions are
beyond the scope of this appendix.

Quadratic CI (QCI) and coupled cluster (CC) exemplify more complex methods that are
not strictly variational in character, but include physical corrections similar to those of
higher-order perturbation theory. Keywords for these methods also include a specification
of substitutions from the reference HF configuration, such as QCISD or CCSD,
respectively, for QCI or CC methods with all single and double substitutions. More
complete descriptions of these methods are beyond the scope of this appendix.

Perturbative methods

Perturbative approximation methods are usually based on the Mgller—Plesset (MP)
perturbation theory for correcting the HF wavefunction. Energetic corrections may be
calculated to second (MP2), third (MP3), or higher order. As usual, the open- versus
closed-shell character of the wavefunction can be specified by an appropriate prefix, such
as ROMP2 or UMP?2 for restricted open-shell or unrestricted MP2, respectively.

An important advantage of MP2 and higher-order perturbation methods is their
size-consistency at every order. This is in contrast to many variational CI methods, for
which the calculated energy of two identical non-interacting systems might not be equal to
twice that of an individual system. Size-consistent scaling is also characteristic of QCI and
CC methods, which are therefore preferable to standard CI-type variational methods for
many applications.

Density-functional methods

Density-functional methods are based on approximating the HF exchange operator and
post-HF correlation corrections by certain functionals E[p], £.[p] of the electron density
p (and possibly its gradient). A density-functional method is uniquely identified by its
exchange and correlation functionals. Examples of the former include the original Becke
(B), Becke one-term (B1), Becke three-term (B3), Perdew—Wang (PW), and modified
one-term Perdew—Wang (mPW1) exchange functionals. Examples of the latter include the
Lee-Yang—Parr (LYP) and Perdew—Wang (PW) correlation functionals.

(Note that several &[p] “functionals” [such as the popular Becke three-term
approximation B3] include an admixture of the true HF exchange operator with the usual
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functional of electron density. Such methods are referred to as “hybrid density-functional
methods” to indicate their closer connection to ab initio methods.)

The keyword for a given density-functional method is formed by concatenating the
symbols for its exchange and correlation functionals. For example, combining the Becke
three-term (B3) exchange functional with the Lee—Yang—Parr (LYP) correlation functional
leads to the popular B3LYP density functional method.

As usual, a density-functional method (such as B3LYP) can be further specified as
being of restricted closed-shell (RB3LYP), restricted open-shell (ROB3LYP), or
unrestricted (UB3LYP) form.

Basis sets

Contemporary basis sets are usually formed from atomic-orbital basis functions &), of
“contracted Gaussian” form,

Xy = Z auigi

i=1

where the g;’s are “primitive” Gaussian-type orbitals, the ay,;’s are fixed contraction
coefficients, and 7 is the length of the contraction. An r-term-contracted Gaussian-type
orbital (CGTO) is often denoted in the form “#G” (e.g., “3G” for a three-term contraction).
Each CGTO X, can be considered as an approximation to a single Slater-type orbital
(STO) with effective nuclear charge ¢ (zeta). The composition of the basis set can
therefore be described in terms of the number of such effective zeta values (or STOs) for
each electron. A “double-zeta” (DZ) basis includes twice as many effective STOs per
electron as a single-zeta “minimal basis” (MB) set, a “triple-zeta” (TZ) basis three times as
many, and so forth. A popular choice, of so-called “split-valence” type, is to describe core
electrons with a minimal set and valence electrons with a more flexible DZ (or higher) set.

Pople-style basis sets

The keyword label of a standard Pople-style split-valence basis specifies the sp sets
(groups of CGTOs of s and p symmetry) with distinct zeta values for each atomic shell, as
well as the contraction length of each CGTO. The keyword contains the following
syntactical components:

(1) the contraction length n. of the core-level set;

(2) (after a hyphen) the contraction lengths n,’, ny”, ny", ... of valence-level sp sets for
each distinct zeta value;

(3) (preceding the character “G”) a “+” if a diffuse sp set is added to each heavy (non-H)
atom, or “+4+" if also a diffuse s function is added to each H; and

(4) (following the “G”) a “*” if polarization functions are added to each heavy atom, or
‘**» if they are added also to H.

(“Diffuse” functions refer to extra-valent Rydberg-like functions of very small effective ¢,
which are suitable for describing anions or the very-long-range tails of electronic
distributions. “Polarization” functions refer to components of higher angular momentum
than required in the atomic ground configuration, e.g., an added set of five d orbitals on
each C, or three p orbitals on each H.) '

The generic symbol to represent a Pople-style basis set is of the form

ne —ny'ny” ... (++)GC*)
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where parenthesized (diffuse and polarization) extensions are optional. Some examples of
this notation are given below, with a corresponding verbal description of the basis
composition:

3-21G minimal 3G (n, = 3) core and double-zeta 2G (n,” = 2), 1G (n,” = 1) valence
sp sets, with no diffuse or polarization functions

6-31G* minimal 6G (n. = 6) core and triple-zeta 3G (n,’ = 3), 1G (n,” = 1) valence
sp sets, with polarization functions on heavy atoms

6-311++G** minimal 6G (. = 6) core and triple-zeta 3G (n,’ = 3), 1G n,/ =1)), .
1G (ny"” = 1) valence sp sets, with diffuse and polarization functions on all atoms

Higher polarization functions can also be specified by replacing “**” by a parenthesized
list of polarization sets for heavy atoms and (after a comma) for hydrogen. For example,
“(2d1f,2p)” would specify two additional d sets and one additional f set on each heavy
atom, as well as two additional p sets on each H.

Some exceptions to this general syntax may be noted.

(1) The label “STO-3G” (equivalent to 3-3G in the notation described above) denotes a
minimal basis 3G set for both core and valence shells (n, = 3, ny = 3).

(2) The label “3-21G(*)” denotes a 3-21G set for atoms up to neon (Z = 10), but
inclusion of a d set for heavier atoms. _

(3) Polarization functions may be optionally chosen to be of “pure” or “Cartesian” form
(by another keyword). In the former case, one includes the expected number of
angular-momentum components (i.e., five d orbitals, seven f orbitals, etc.), whereas in
the latter case some additional component(s) of lower angular momentum are
included (e.g., a Cartesian “d set” includes five d orbitals plus one s orbital, a
Cartesian “f set” includes seven f orbitals plus three p orbitals, and so forth).

Effective-core-potential (ECP) basis sets

The ECP basis sets include basis functions only for the outermost one or two shells,
whereas the remaining inner core electrons are replaced by an “effective core” or
“pseudopotential.” The ECP basis keyword consists of a source identifier (such as LANL
for “Los Alamos National Laboratory”), the number of outer shells retained (1 or 2), and a
conventional label for the number of ¢ sets for each shell (MB, DZ, TZ, .. .). For example,
“ANL1MB?” denotes the minimal LANL basis with minimal basis functions for the
outermost shell only, whereas “LANL2DZ” is the set with double-zeta functions for each
of the two outermost shells. The ECP basis set employed throughout Chapter 4 (denoted
“LACV3P” in Jaguar terminology) is also of Los Alamos type, but with full triple-zeta
valence flexibility and polarization and diffuse functions on all atoms (comparable to the
6-311++G** all-electron basis used elsewhere in this book).

An important advantage of ECP basis sets is their ability to incorporate approximately
the physical effects of relativistic core contraction and associated changes in screening on
valence orbitals, by suitable adjustments of the radius of the effective core potential. Thus,
the ECP valence atomic orbitals can approximately mimic those of a fully relativistic
(spinor) atomic calculation, rather than the non-relativistic all-electron orbitals they are
nominally serving to replace. The partial inclusion of relativistic effects is an important
physical correction for heavier atoms, particularly of the second transition series and
beyond. Thus, an ECP-like treatment of heavy atoms is necessary in the non-relativistic
framework of standard electronic-structure packages, even if the reduction in number of
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basis orbitals obtained through neglect of atomic core electrons were of no practical
importance. For this reason, all-electron basis sets (such as 6-311G and its extensions) are
commonly unavailable for atoms beyond the first transition series.

Correlation-consistent basis sets

Dunning has developed a series of “correlation-consistent” polarized valence n-zeta basis
sets (denoted “cc-pVrZ”) in which polarization functions are systematically added to all
atoms with each increase in »n. (Corresponding diffuse sets are also added for each # if the
prefix “aug-" is included.) These sets are optimized for use in correlated calculations and
are chosen to insure a smooth and rapid (exponential-like) convergence pattern with
increasing n. For example, the keyword label “aug-cc-pVDZ” denotes a valence
double-zeta set with polarization and diffuse functions on all atoms (approximately
equivalent to the 6-311++G** set), whereas “aug-cc-pVQZ” is the corresponding
quadruple-zeta basis which includes (3d2f1g,2p1d) polarization sets.

Related basis sets in common usage include the original Dunning full and valence
double-zeta sets, denoted D95 and D95V, respectively (built from nine s-type and five
p-type primitives). These sets may be augmented in the usual way with diffuse and/or
polarization functions, as in the example “D95++**" (diffuse and first-polarization sets
on all atoms).

Notes for Appendix A

1. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory
(New York, Wiley, 1986).

2. J. B. Foresman and A. Frisch, Exploring Electronic Structure Calculations, 2nd edn. (Pittsburgh,
PA, Gaussian, Inc., 1998).
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