Robustness and surgery of frames

Sivaram K. Narayan a,⁎, Eileen L. Radzwion a, Sara P. Rimer a, Rachael L. Tomasino a, Jennifer L. Wolfe a, Andrew M. Zimmer b

a Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, USA
b Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

ARTICLE INFO

Article history:
Received 1 January 2010
Accepted 28 November 2010
Available online 15 January 2011
Submitted by S. Fallat

AMS classification:
15A03
46C99
65F30

Keywords:
Frames
Tight frames
Robustness
Erasure
Surgery

1. Introduction

The focus of this paper is on robustness and surgeries of frames in finite dimensional Hilbert spaces. The study of finite dimensional frames has been motivated by a variety of applications such as signal processing, multiple-antenna wireless systems, and sampling theory. The concept of frames was introduced by Duffin and Schaeffer [5] and popularized by Daubechies [4]. A good introduction to frames in finite dimensional Hilbert spaces can be found in [7].

⁎ Research was supported by NSF-LURE grant 06-36528.
* Corresponding author. Tel.: +1 989 774 3566; fax: +1 989 774 2414.
E-mail addresses: sivaram.narayan@cmich.edu (S.K. Narayan), eileen.l.radzwion@gmail.com (E.L. Radzwion), sara.p.rimer@gmail.com (S.P. Rimer), tomas1r@cmich.edu (R.L. Tomasino), wolfe2je@cmich.edu (J.L. Wolfe), zimmen4@illinois.edu (A.M. Zimmer).

0024-3795/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2010.11.049
A frame in a finite dimensional Hilbert space is a redundant spanning set of vectors. We consider two operations on frames. The \textit{erasure} consists of removing vectors in a frame. A frame is said to be \textit{robust} to \(k \) erasures if after randomly removing \(k \) vectors the resulting set is still a frame. In this paper we give a necessary and sufficient condition for a frame in \(\mathbb{R}^n \) to be robust to \(k \) erasures. The condition is stated in terms of the support of the null space of the synthesis operator of the frame. This theorem generalizes a characterization of frames robust to one erasure given by Casazza and Kovačević [2]. The second operation that we consider is the removal of \(r \) vectors from the frame and adding \(k \) vectors to the frame called \((r, k)\)-surgery. We characterize when a \((r, k)\)-surgery is possible on a unit-norm tight frame in \(\mathbb{R}^2 \). The result on “length surgery” generalizes a characterization of the existence of tight frames with prescribed norms found in [3].

2. Preliminaries

We begin with the definition of a frame.

\textbf{Definition 2.1.} A \textit{frame} for a Hilbert space \(\mathcal{H} \) is a sequence of vectors \(\{x_i\}_{i \in I} \subset \mathcal{H} \) for which there exist constants \(0 < A \leq B < \infty \) such that for every \(x \in \mathcal{H} \),

\[A\|x\|^2 \leq \sum_{i \in I} |\langle x, x_i \rangle|^2 \leq B\|x\|^2. \]

Here \(A \) is the greatest lower frame bound and \(B \) is the least upper frame bound. A frame is called a \textit{tight frame} if \(A = B \). A \textit{uniform frame} is a frame in which all the vectors have equal norm. If all the norms in a uniform frame equals one, the frame is called a \textit{unit-norm frame}. We focus on frames in finite dimensional Hilbert spaces.

Let \(\{x_i\}_{i \in I} \) be a frame in \(\mathcal{H} \). The linear map \(V : \mathcal{H} \rightarrow l^2(I) \) defined by \((Vx)_i = \langle x, x_i \rangle \) is called the \textit{analysis operator}. The Hilbert space adjoint \(V^* \) is called the \textit{synthesis operator}. The \textit{frame operator} is given by \(V^*V \). In \(\mathbb{R}^n \) the analysis operator of a frame \(\{x_i\}_{i=1}^m \) is given by the \(m \)-by-\(n \) matrix

\[
V = \begin{bmatrix}
\leftarrow x_1^* \rightarrow \\
\leftarrow x_2^* \rightarrow \\
\vdots \\
\leftarrow x_m^* \rightarrow
\end{bmatrix}
\]

and the \textit{synthesis operator} \(V^* \) is given by the \(n \)-by-\(m \) matrix

\[
V^* = \begin{bmatrix}
\uparrow \uparrow \uparrow \\
x_1 & x_2 & \ldots & x_m \\
\downarrow \downarrow \downarrow
\end{bmatrix}
\]

and the \textit{frame operator} is the matrix \(V^*V \).

The following equivalent descriptions of frames in \(\mathbb{R}^n \) are used in this paper.

\textbf{Theorem 2.2} [7]. The following statements are equivalent:

1. \(\{x_1, x_2, \ldots, x_m\} \) is a frame in \(\mathbb{R}^n \).
2. \(\{x_1, x_2, \ldots, x_m\} \) is a spanning set for \(\mathbb{R}^n \).
3. The \(n \)-by-\(m \) matrix \(V^* = \begin{bmatrix} x_1 & x_2 & \ldots & x_m \end{bmatrix} \) has rank \(n \).
3. Robustness

Suppose an encoded version Vx of a vector x in \mathbb{R}^n is transmitted across a communication network. If k of the components of Vx are lost or not delivered the receiver would want to be able to reconstruct Vx using the components that have been received. If V represents the analysis operator of a frame $\{x_i\}_{i=1}^m$ in \mathbb{R}^n, what are the frames that allow one to recover the coefficients corresponding to the k frame vectors that are “erased” during transmission? Such frames are often called robust to k erasures. Notice that these are exactly the frames that remain frames after any k frame vectors are “erased” during transmission. The characterization shows that every index set of size $m - k + 1$ is in the support of the null space of the synthesis operator.

Definition 3.2. The support of a vector $x = (x_1, x_2, \ldots, x_m)$ in \mathbb{R}^m, denoted $\text{supp}(x)$, is the set of indices $\{i \in \{1, 2, \ldots, m\} : x_i \neq 0\}$.

Definition 3.3. Let $\mathcal{N}(A)$ denote the null space of a matrix A. The support of the null space of A, denoted $\nabla(A)$, is the collection of $\text{supp}(x)$ as x varies over $\mathcal{N}(A)$. That is,

$$\nabla(A) = \{\text{supp}(x) : x \in \mathcal{N}(A)\}.$$

Example 3.4. Let

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

Then $\mathcal{N}(A) = \text{span}\{v_1, v_2\}$ where $v_1^T = (1, 0, -1, 1, -1)$ and $v_2^T = (0, 1, -1, 0, 1)$. To determine $\nabla(A)$ we consider $\text{supp}(x)$ where $x = \alpha v_1 + \beta v_2, \alpha, \beta \in \mathbb{R}$.

Case 1: if $\alpha = 0$, then the possibilities for $\text{supp}(x)$ are \emptyset or $\{2, 3, 5\}$.

Case 2: if $\beta = 0$, then the possibilities for $\text{supp}(x)$ are \emptyset or $\{1, 3, 4, 5\}$.

Case 3: if $\alpha \neq 0$ and $\beta \neq 0$ then the possibilities for $\text{supp}(x)$ are $\{1, 2, 3, 4, 5\}$, or $\{1, 2, 4, 5\}$.

Hence

$$\nabla(A) = \{\{2, 3, 5\}, \{1, 3, 4, 5\}, \{1, 2, 3, 4\}, \{1, 2, 4, 5\}, \{1, 2, 3, 4, 5\}\}.$$

Lemma 3.5. If $X, Y \in \nabla(A)$, then $X \cup Y \in \nabla(A)$.

Proof. Suppose $x, y \in \mathcal{N}(A)$ such that $X = \text{supp}(x)$ and $Y = \text{supp}(y)$. For any $\epsilon \in \mathbb{R}$, let $z_\epsilon = x + \epsilon y$. Clearly $z_\epsilon \in \mathcal{N}(A)$ and as the ith component of z_ϵ is $x_i + \epsilon y_i$, we see that for all but a finite number of ϵ we have $\text{supp}(z_\epsilon) = X \cup Y$. Thus $X \cup Y \in \nabla(A)$.

The following classification of frames robust to one erasure was given by Casazza and Kovačević.
Theorem 3.6 [3]. Let \(\{x_i\}_{i=1}^{m} \) be a frame in \(\mathbb{R}^n \). The following are equivalent:

1. \(\{x_i\}_{i=1}^{m} \) is a frame robust to one erasure.
2. There are scalars \(c_i \neq 0 \), for \(1 \leq i \leq m \), such that
 \[
 \sum_{i=1}^{m} c_i x_i = 0.
 \]

Remark 3.7. Statement (2) is a condition on the support of the null space of the synthesis operator, in particular: \(\{1, 2, \ldots, m\} \in \overset{\sim}{\nabla}(V^*) \), where \(V^* \) is the synthesis operator corresponding to the frame \(\{x_i\}_{i=1}^{m} \). This observation motivated the following theorem.

Theorem 3.8. Let \(\{x_i\}_{i=1}^{m} \) be a frame in \(\mathbb{R}^n \). The following are equivalent:

1. \(\{x_i\}_{i=1}^{m} \) is a frame robust to \(k \) erasures.
2. For all index sets \(I \subset \{1, 2, \ldots, m\} \) with \(|I| = k - 1 \), \(I^c \in \overset{\sim}{\nabla}(V^*) \).

Here if \(I \subset \{1, \ldots, m\} \) we let \(I^c \) denote the complement of \(I \), that is \(I^c = \{1, \ldots, m\} \setminus I \).

Proof. (2) \(\Rightarrow \) (1) Suppose that \(x_{j_1}, x_{j_2}, \ldots, x_{j_k} \) are erased from \(\{x_i\}_{i=1}^{m} \). We will first show that \(x_{jk} \) can be reconstructed from the remaining frame vectors after erasing \(x_{j_1}, \ldots, x_{j_k} \). By hypothesis, \(J = \{j_1, \ldots, j_{k-1}\}^c \in \overset{\sim}{\nabla}(V^*) \) so there exists a vector \(c \in \mathcal{N}(V^*) \) such that \(\text{supp}(c) = J \). Therefore

\[
0 = V^*c = \sum_{i \in J} c_i x_i = c_k x_{jk} + \sum_{i \in J, i \neq j_k} c_i x_i.
\]

Since \(c_{jk} \neq 0 \) we obtain

\[
x_{jk} = \sum_{i \in J, i \neq j_k} \left(-\frac{c_i}{c_{jk}} \right) x_i.
\]

In a similar fashion each of \(x_{j_1}, \ldots, x_{j_{k-1}} \) can be also be reconstructed from the frame vectors left after erasing \(x_{j_1}, \ldots, x_{j_k} \).

Finally, as \(\{x_1, \ldots, x_m\} \) span \(\mathbb{R}^n \) and the span of \(\{x_i\}_{i \in J} \) includes the vectors \(\{x_i\}_{i \in I^c} \) we must have that \(\{x_i\}_{i \in J} \) is a spanning set and hence a frame.

(1) \(\Rightarrow \) (2) Suppose \(\{x_i\}_{i=1}^{m} \) is a frame robust to \(k \) erasures. Let \(I = \{j_1, j_2, \ldots, j_{k-1}\} \subset \{1, 2, \ldots, m\} \). Let \(J \in \overset{\sim}{\nabla}(V^*) \) be an index set of maximum cardinality disjoint from \(I \). We claim that \(J = I^c \). Suppose not, then \(J \subsetneq I^c \) and we may choose \(j_k \in J \cap I^c \). Since \(\{x_i\}_{i=1}^{m} \) is robust to \(k \) erasures, \(x_{jk} \) can be reconstructed from frame vectors remaining after the erasure of \(x_{j_1}, \ldots, x_{j_k} \). Thus

\[
x_{jk} = \sum_{i \in I^c, i \neq j_k} c_i x_i.
\]

and so

\[
V^*y = x_{jk} - \sum_{i \in I^c, i \neq j_k} c_i x_i = 0
\]

where \(y \) is the vector with components \(y_i = -c_i \) when \(i \in I^c \) and not equal to \(j_k \), \(y_{jk} = 1 \), and \(y_i = 0 \) when \(i \notin I \). Then \(\text{supp}(y) \in \overset{\sim}{\nabla}(V^*) \), \(J_k \in \text{supp}(y) \), and \(\text{supp}(y) \subset I^c \). By Lemma 3.5, we also have that \(J \cup \text{supp}(y) \in \overset{\sim}{\nabla}(V^*) \). This contradicts the assumption that \(J \) has maximum cardinality. Hence \(J = I^c \in \overset{\sim}{\nabla}(V^*) \). \(\square \)
Example 3.9. Suppose
\[
A = \begin{bmatrix}
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}.
\]
Using Theorem 2.2 we observe that the columns of \(A\) form a frame in \(\mathbb{R}^3\). In Example 3.4 we found that
\[
\tilde{\nabla}(A) = \{ \{2, 3, 5\}, \{1, 3, 4, 5\}, \{1, 2, 3, 4\}, \{1, 2, 4, 5\}, \{1, 2, 3, 4, 5\} \}.
\]
Notice that \(\{1\} = \{2, 3, 4, 5\} \not\in \tilde{\nabla}(A)\). Hence from Theorem 3.8, the columns of \(A\) do not form a frame robust to 2 erasures.

4. Frame surgery

Given a frame, a natural question is whether it can be manipulated in some way to make it a tight frame. Recall that a tight frame is a frame with equal upper and lower bounds. One kind of manipulation of frames in \(\mathbb{R}^n\) is to maintain the lengths of vectors but change the orientation of the vectors. Another kind of manipulation is to add or remove some vectors from a given frame.

Definition 4.1 [7]. An \((r, k)\)-surgery on a finite sequence of vectors in \(\mathbb{R}^n\) removes \(r\) vectors and adds \(k\) vectors to the sequence.

A frame \(\{x_i\}_{i=1}^m\) in \(\mathbb{R}^2\) can be represented in polar coordinates as
\[
x_i = \begin{bmatrix}
a_i \cos \theta_i \\
a_i \sin \theta_i
\end{bmatrix},
\]
where \(a_i\) is the length of \(x_i\) and \(0 \leq \theta_i \leq \pi\) is the angle between \(x_i\) and the positive \(x\)-axis. Suppose \(\{x_i\}_{i=1}^m\) is a tight frame. Then \(V^*V = al\) where \(a\) is the frame bound and \(I\) is the identity matrix. Thus
\[
V^*V = \begin{bmatrix}
\sum a_i^2 \cos^2 \theta_i & \sum a_i^2 \cos \theta_i \sin \theta_i \\
\sum a_i^2 \cos \theta_i \sin \theta_i & \sum a_i^2 \sin^2 \theta_i
\end{bmatrix} = \begin{bmatrix}
a & 0 \\
0 & a
\end{bmatrix}
\]
is bounded by \(\frac{1}{2}(k^2 - N)\) where \(N = m - r\) and \(\tilde{x}_1, \ldots, \tilde{x}_N\) denote the diagram vectors that remain after deleting \(r\) frame vectors.
Proof. Let $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_N$ be the diagram vectors that are present after removing r vectors from the unit-norm tight frame \mathcal{F}. Let W denote their vector sum $\vec{x}_1 + \cdots + \vec{x}_N$. If we were to add k unit vectors to \mathcal{F} and keep it a unit-norm tight frame then such a (r, k)-surgery on \mathcal{F} is possible if and only if $\|W\| \leq k$. Therefore,

$$\|W\|^2 = \langle \vec{x}_1 + \cdots + \vec{x}_N, \vec{x}_1 + \cdots + \vec{x}_N \rangle$$

$$= \sum_{i=1}^{N} \|\vec{x}_i\|^2 + \sum_{i,j=1}^{N} \langle \vec{x}_i, \vec{x}_j \rangle$$

$$= N + 2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \langle \vec{x}_i, \vec{x}_j \rangle$$

$$= N + 2S$$

where S is the sum of the strict upper triangular part of the Grammian $\{(\vec{x}_i, \vec{x}_j)\}_{i,j=1}^N$. Hence (r, k)-surgery is possible if and only if

$$N + 2S \leq k^2$$

or equivalently

$$S \leq \frac{k^2 - N}{2}. \quad \square$$

Remark 4.4. If θ_{ij} denotes the angle between vectors \vec{x}_i and \vec{x}_j then from Theorem 4.3 we get

$$S = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \cos (\theta_{ij}) \leq \frac{k^2 - N}{2}. \quad (4.4)$$

Corollary 4.5. Let $\{x_i\}_{i=1}^m$ be a unit-norm tight frame in \mathbb{R}^2. Suppose $k = \lfloor \frac{m}{2} \rfloor$ where $m > 2$. Then it is always possible to perform a $(k + 1, k)$-surgery resulting in a new unit-norm tight frame. In particular, any unit-norm tight frame consisting of m vectors may be reduced to a unit-norm tight frame consisting of $m - s$ vectors where $1 \leq s \leq m - 2$.

Proof. Suppose $m = 2k + 1$. Then removing $k + 1$ vectors leaves $N = m - (k + 1) = k$ vectors. Because $\cos (\theta_{ij}) \leq 1$, using Remark 4.4, we get

$$S = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \cos (\theta_{ij}) \leq \frac{k(k - 1)}{2} = \frac{k^2 - N}{2}. \quad (4.5)$$

Hence from Theorem 4.3 it is possible to perform $(k + 1, k)$-surgery.

Suppose $m = 2k$. Then removing $k + 1$ vectors leaves $N = m - (k + 1) = k - 1$ vectors. Again

$$S = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \cos (\theta_{ij}) \leq \frac{k(k - 1)}{2} < \frac{k^2 - (k - 1)}{2} \quad (4.6)$$

implies from Theorem 4.3 that $(k + 1, k)$-surgery is possible.

It is easy to observe that a repeated application of the two cases in the proof will reduce any unit-norm tight frame of \mathbb{R}^2 consisting of m vectors to a unit-norm tight frame of \mathbb{R}^2 consisting of $m - s$ vectors where $1 \leq s \leq m - 2. \quad \square$

Remark 4.6. A construction of the vectors for Corollary 4.5 in the case $m = 2k + 1$ can be shown as follows.

For $\theta \in [0, 2\pi)$, let R_θ be the matrix that rotates a vector x in \mathbb{R}^2 by θ radians in the counterclockwise direction. That is,
Let $\{x_i\}_{i=1}^m$ be a unit-norm tight frame for \mathbb{R}^2 where $m = 2k + 1$. Suppose the vectors x_1, \ldots, x_{k+1} are removed from $\{x_i\}_{i=1}^m$ and assume that the remaining vectors are not all identical. Define $a, b \in \mathbb{R}$ as

$$\begin{bmatrix} a \\ b \end{bmatrix} = \sum_{i=k+2}^m \bar{x}_i.$$

To simplify calculations, pick the angle θ such that

$$R_{\theta} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sqrt{a^2 + b^2} \\ 0 \end{bmatrix} = \sum_{i=k+2}^m R_{\theta} \bar{x}_i.$$

Note that $\{R_{\theta} \bar{x}_i\}_{i=k+2}^m$ are the diagram vectors of $\{R_{\theta} x_i\}_{i=1}^{m-1}$. Define $\phi_i \in [0, 2\pi)$ for $k+2 \leq i \leq m$, so that

$$R_{\theta} x_i = \begin{bmatrix} \cos \phi_i \\ \sin \phi_i \end{bmatrix}$$

and

$$R_{2\theta} \bar{x}_i = \begin{bmatrix} \cos 2\phi_i \\ \sin 2\phi_i \end{bmatrix}.$$

Consider the vectors $\{y_i\}_{i=1}^k$ where

$$y_i = \begin{bmatrix} \cos \left(\frac{\pi}{2} - \phi_{k+1+i} \right) \\ \sin \left(\frac{\pi}{2} - \phi_{k+1+i} \right) \end{bmatrix} = \begin{bmatrix} \sin(\phi_{k+1+i}) \\ \cos(\phi_{k+1+i}) \end{bmatrix}.$$

Then for $1 \leq i \leq k$,

$$\bar{y}_i = \begin{bmatrix} \cos(\pi - 2\phi_{k+1+i}) \\ \sin(\pi - 2\phi_{k+1+i}) \end{bmatrix} = \begin{bmatrix} -\cos 2\phi_{k+1+i} \\ \sin 2\phi_{k+1+i} \end{bmatrix}.$$

Consider the sequence $\mathcal{F} = \{R_{\theta} x_i\}_{i=k+2}^m \cup \{y_i\}_{i=1}^k$. Clearly $R_{\theta} x_i$ and y_j are linearly independent when $\cos \phi_i \neq \sin \phi_i$. As $\{x_i\}_{i=k+2}^m$ are all not identical there must exist vectors $R_{\theta} x_i$ and y_j that are linearly independent. So \mathcal{F} spans \mathbb{R}^2 and therefore is a frame. Also,

$$\sum_{i=k+2}^m R_{2\theta} \bar{x}_i + \sum_{i=1}^k \bar{y}_i = \sum_{i=k+2}^m \begin{bmatrix} \cos 2\phi_i \\ \sin 2\phi_i \end{bmatrix} + \sum_{i=1}^k \begin{bmatrix} -\cos 2\phi_{k+1+i} \\ \sin 2\phi_{k+1+i} \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{a^2 + b^2} \\ 0 \end{bmatrix} + \begin{bmatrix} -\sqrt{a^2 + b^2} \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

shows that \mathcal{F} is a tight frame.

When considering tight frames, a natural question arises: when do the norms of vectors in a frame automatically prohibit the frame from being a tight frame? The question is answered in [2] for an n-dimensional Hilbert space.
Theorem 4.7 [2]. There is a tight frame for an n-dimensional Hilbert space \mathcal{H} with m vectors having norms $\|x_i\| = a_i$, $i = 1, 2, \ldots, m$ if and only if the following inequality is satisfied:

$$\max_{1 \leq i \leq m} \{a_i^2\} \leq \frac{1}{n} \sum_{i=1}^{m} a_i^2.$$

Definition 4.8. Let a_1, a_2, \ldots, a_m denote norms of m vectors in \mathbb{R}^n. An (r, k)-length surgery on $\{a_i\}_{i=1}^{m}$ removes r numbers and replaces them with k positive numbers.

We have the following generalization of Theorem 4.7.

Theorem 4.9. Given a sequence $\{a_i\}_{i=1}^{m}$ of nonnegative real numbers, it is possible to perform a $(0, k)$-length surgery resulting in a sequence of nonnegative real numbers that corresponds to norms of vectors in a tight frame for \mathbb{R}^n if and only if $0 \leq k < n$ and

$$a_{\text{max}}^2 = \max_{1 \leq i \leq m} \{a_i^2\} \leq \frac{1}{n-k} \sum_{i=1}^{m} a_i^2.$$

Proof. Let $M = \sum_{i=1}^{m} a_i^2$ and consider $\{r_i\}_{i=1}^{k} \cup \{a_i\}_{i=1}^{m}$. If $a_{\text{max}}^2 \leq \frac{1}{n} M$, then the fundamental inequality holds for all $k \in \mathbb{N}$ if $r_1 = 0$ for all $1 \leq i \leq k$. Otherwise, $a_{\text{max}}^2 > \frac{1}{n} M$. With the addition of $\{r_i\}_{i=1}^{k}$ the left hand side of the fundamental inequality becomes:

$$\max\{a_{\text{max}}^2, r_1^2, r_2^2, \ldots, r_k^2\}$$

while the right hand side becomes:

$$\frac{1}{n} (M + r_1^2 + r_2^2 + \cdots + r_k^2).$$

As we want Eq. (1) to be as small as possible and Eq. (2) to be as large as possible, we may assume $r := r_1 = \cdots = r_k$. Then Eq. (1) becomes $\max\{a_{\text{max}}^2, r^2\}$ while Eq. (2) becomes $\frac{1}{n} (M + k r^2)$. Define the function $h : [0, \infty) \rightarrow \mathbb{R}$ as

$$h(r) = \begin{cases} \frac{(M + kr^2)}{n} - a_{\text{max}}^2 & \text{if } r < a_{\text{max}} \\ \frac{(M + kr^2)}{n} - r^2 & \text{if } r \geq a_{\text{max}}. \end{cases}$$

Then a $(0, k)$-length surgery that results in a sequence that satisfies the fundamental inequality is possible if and only if there exists r_0 such that $0 \leq h(r_0)$. This is equivalent to saying that the global maximum of h is nonnegative. Because h is a piecewise monotone function, the global maximum occurs at either $0, a_{\text{max}}$, or ∞. Note that $h(0) = \frac{M}{n} - a_{\text{max}}^2$, $h(a_{\text{max}}) = \frac{M}{n} + \left(\frac{k}{n} - 1\right) a_{\text{max}}^2$, and

$$\lim_{r \to \infty} h(r) = \lim_{r \to \infty} \frac{M + (k - n)r^2}{n} = \begin{cases} -\infty & \text{if } k < n \\ M/n & \text{if } k = n \\ \infty & \text{if } k > n. \end{cases}$$

Summarizing, when $k < n$ we have $\lim_{r \to \infty} h(r) < 0$ and also that $h(0) < 0$. So the desired $(0, k)$-length surgery is possible if and only if $h(a_{\text{max}}) \geq 0$, which is equivalent to $a_{\text{max}}^2 \leq \frac{M}{n-k}$. □

Acknowledgements

This paper presents some of the results obtained during the 2008 NSF-LURE summer program at Central Michigan University. Sivaram Narayan was the faculty advisor for this project and Andrew...
Zimmer was a graduate student mentor. The other co-authors were undergraduate students in the LURE program. The authors thank the referees for helpful suggestions.

References