Solution

- <u>Solvent</u> and one or more <u>solutes</u> dissolved in the solvent
- Interested in aqueous solutions, where the solvent is water

When ionic compounds (salts) dissolve in water, ions <u>dissociate</u>

- Surrounded by H_2O molecules
- NaCl(s) water Na+ (aq) + Cl- (aq)
 - (s) = solid; (aq) = aqueous solution

- · An aqueous solution of NaCl conducts electricity
 - Ions are free to move
- Substances that form ions in solution are called electrolytes
- NaCl is a <u>strong</u> electrolyte because it completely dissociates to form ions

- In a <u>weak</u> electrolyte, only a small amount that dissolves (< 5%) dissociates to form ions
- · The rest stays in molecular form
- Acetic acid
 H₃CCOOH

 → H⁺ + H₃CCOO⁻
- <u>Nonelectrolytes</u> dissolve in H₂O but don't produce ions, e.g. sucrose, ethyl alcohol
 - Polar molecules soluble

 <u>Precipitation Reactions</u> – two solutions are mixed and a precipitate forms

$$BaCl_2(aq) + Na_2CO_3(aq) \rightarrow BaCO_3(s) + 2 NaCl(aq)$$

- Molecular equation
 - $BaCl_2(aq)$ actually $Ba^{2+}(aq)$ and $2Cl^{-}(aq)$
 - BaCO3(s) insoluble
 - Precipitates from solution as solid

- The dividing line between soluble and insoluble is approximately 0.01 M, i.e., in the range of 1 to 10 g/L
- · If more than this dissolves, the salt is soluble

Martin S. Silberberg, Chemietry: The Molecular Nature of Matter and Change, 2nd Edition. Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Table 4.1 Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds

Insoluble Ionic Compounds

- All common compounds of Group 1A(1) ions (Li⁺, Na⁺, K⁺, etc.) and ammonium ion (NH₄⁺) are soluble.
- All common nitrates (NO₃⁻), acetates (CH₃COO⁻), and most perchlorates (ClO₄⁻) are soluble.
- All common chlorides (Cl⁻), bromides (Br⁻), and iodides (I⁻) are soluble, except those of Ag⁺, Pb²⁺, Cu⁺, and Hg₂²⁺.
- All common sulfates (SO₄²⁻) are soluble, except those of Ca²⁺, Sr²⁺, Ba²⁺, and Pb²⁺.
- All common metal hydroxides are insoluble, except those of Group 1A(1) and the larger members of Group 2A(2) (beginning with Ca²⁺).
- All common carbonates (CO₃²⁻) and phosphates (PO₄³⁻) are insoluble, except those of Group 1A(1) and NH₄⁺.
- All common sulfides are insoluble, except those of Group 1A(1), Group 2A(2), and NH₄⁺.

· Total ionic equation

Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) +
$$CO_3^{2-}$$
(aq) \rightarrow Ba CO_3 (s) + 2Na⁺(aq) + 2Cl⁻(aq)

- CO₃²⁻ is a polyatomic ion
- · Nat and Cl- are spectator ions
- · Omit these ions when writing net ionic equation:

$$Ba^{2+}(aq) + CO_3^{2-}(aq) \rightarrow BaCO_3(s)$$

Formula	Name	Formula	Name
Cations NH₄ ⁺ H₃O⁺	ammonium hydronium		
Anions		Anions (cont.)	
CH ₃ COO ⁻ (or C ₂ H ₃ O ₂	acetate	CrO ₄ ²⁻ Cr ₂ O ₇ ²⁻ O ₂ ²⁻ PO ₄ ³⁻	chromate dichromate
CN ⁻	cyanide	$O_2^{\bar{2}-}$	peroxide
OH ⁻	hydroxide	PO ₄ 3-	phosphate
CIO ⁻	hypochlorite	HPO ₄ ²⁻	hydrogen
CIO ₂	chlorite		phosphate
CIO ₃	chlorate	H ₂ PO ₄ ⁻	dihydrogen
CIO ₄	perchlorate		phosphate
NO_2^-	nitrite	SO ₃ ²⁻	sulfite
NO ₃	nitrate	SO ₃ ²⁻ SO ₄ ²⁻	sulfate
MnO ₄	permanganate	HSO ₄	hydrogen sulfate
CO ₃ ²⁻	carbonate	3500000000	(or bisulfate)
HCO ₃	hydrogen carbonate (or		
	bicarbonate)		

• Balance the reaction and write net ionic equation:

$$ZnCl_2 + KOH \rightarrow KCI + Zn(OH)_2$$

· Balance:

$$ZnCl_2 + 2KOH \rightarrow 2KCl + Zn(OH)_2$$

Determine which are soluble and which are insoluble

$$ZnCl_2(aq) + 2 KOH(aq) \rightarrow 2KCl(aq) + Zn(OH)_2(s)$$

Martin S. Silberberg, Chemietry: The Molecular Nature of Matter and Change, 2nd Edition. Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Table 4.1 Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds

Insoluble Ionic Compounds

- All common compounds of Group 1A(1) ions (Li⁺, Na⁺, K⁺, etc.) and ammonium ion (NH₄⁺) are soluble.
- All common nitrates (NO₃⁻), acetates (CH₃COO⁻), and most perchlorates (ClO₄⁻) are soluble.
- All common chlorides (Cl⁻), bromides (Br⁻), and iodides (I⁻) are soluble, except those of Ag⁺, Pb²⁺, Cu⁺, and Hg₂²⁺.
- All common sulfates (SO₄²⁻) are soluble, except those of Ca²⁺, Sr²⁺, Ba²⁺, and Pb²⁺.
- All common metal hydroxides are insoluble, except those of Group 1A(1) and the larger members of Group 2A(2) (beginning with Ca²⁺).
- All common carbonates (CO₃²⁻) and phosphates (PO₄³⁻) are insoluble, except those of Group 1A(1) and NH₄⁺.
- All common sulfides are insoluble, except those of Group 1A(1), Group 2A(2), and NH₄⁺.

- · This is a molecular equation
- · Write total ionic equation:

$$Zn^{2+}(aq) + 2Cl^{-}(aq) + 2K^{+}(aq) + 2OH^{-}(aq) \rightarrow 2K^{+}(aq) + 2Cl^{-}(aq) + Zn(OH)_{2}(s)$$

Write net ionic equation:

$$Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_2(s)$$

- · Commonly define acid as substance that produces H⁺
- In H_2O , H^+ attached to H_2O molecule to produce hydronium ion

$$H^{+} + H - \ddot{O}: \longrightarrow \begin{bmatrix} H - \ddot{O} - H \end{bmatrix}^{\oplus}$$

- $HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$
- Arrow points only in forward direction because reaction goes to completion
- Arrows both ways because only a small amount of CH₃COOH dissociates, reaches equilibrium
- HCl strong acid
- CH₃COOH weak acid

Base - produces OH⁻ in H₂O

NaOH(s) water Nat(aq) + OH-(aq)

 $NH_3(aq) + H_2O(1) \leftrightarrows NH_4^+(aq) + OH^-(aq)$

- Only a small amount of NH₃ is converted to NH₄⁺
- · NaOH strong base
- · NH₃ weak base

Martin S. Silberberg, Chemiatry: The Molecular Nature of Matter and Change, 2 no Edition. Copyright © The McGraw-Hill Companies, Inc. All rights reserved

Table 4.2 Selected

Acids and Bases

Acids

Strong

Hydrochloric acid, HCI Hydrobromic acid, HBr Hydriodic acid, HI Nitric acid, HNO₃ Sulfuric acid, H₂SO₄ Perchloric acid, HClO₄

Weak

Hydrofluoric acid, HF Phosphoric acid, H₃PO₄ Acetic acid, CH₃COOH (or HC₂H₃O₂)

Bases

Strong

Sodium hydroxide, NaOH Potassium hydroxide, KOH Calcium hydroxide, Ca(OH)₂ Strontium hydroxide, Sr(OH)₂ Barium hydroxide, Ba(OH)₂

Weak

Ammonia, NH₃

Neutralization reaction

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$$

- H₂O very stable, reaction goes to completion
- HX + MOH → MX + H₂O
 acid base salt

M = "+" ion, cation X = "-" ion, anion

- $2HNO_3(aq) + Ca(OH)_2(aq) \rightarrow Ca(NO_3)_2(aq) + 2H_2O(1)$
- · Total ionic:

$$2H^{+}(aq) + 2NO_{3}^{-}(aq) + Ca^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ca^{2+}(aq) + 2NO_{3}^{-}(aq) + 2H_{2}O$$
 (/)

Net ionic:

$$2H^+(aq) + 2OH^-(aq) \rightarrow 2H_2O(1)$$

or
$$H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$$

 Acids will react with several salts to produce a gas that leaves the solution

$$2HNO_3(aq) + Na_2CO_3(aq) \rightarrow 2NaNO_3(aq) + H_2CO_3(aq)$$

- $H_2CO_3(aq) \rightarrow CO_2(q) + H_2O(1)$
- · Net ionic:
- $2H^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow CO_{2}(q) + H_{2}O(\Lambda)$

In order for a reaction to occur, something must happen that is irreversible

- 1) Two soluble ions \rightarrow insoluble salt (precipitation)
- 2) $H^+ + OH^- \rightarrow H_2O$ (acid base, neutralization)
- 3) Reaction produces an insoluble gas, e.g. CO_2 , that leaves the solution

• $H_2SO_4(aq) + KOH(aq) \rightarrow$

$$2H^+ + 5O_4^{2-} + K^+ + OH^- \rightarrow$$

· Exchange partners, double KOH

$$\rightarrow$$
 2K⁺ + 5O₄²⁻ + 2H₂O

· Net ionic:

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$$

Strong acids

Hydrohalic acids HCl, HBr and HI Oxoacids HNO₃, H₂SO₄, and HClO₄

Weak acids

Hydrohalic acids HF HCN and H₂S Oxoacids such as HClO, HNO₂ and H₃PO₄

Strong bases

 M_2O or MOH, where M is Group 1A MO or $M(OH)_2$, where M is Group 2A

Weak bases

Ammonia CH₃CH₂NH₂