Solution

- Solvent and one or more solutes dissolved in the solvent
- Interested in aqueous solutions, where the solvent is water

When ionic compounds (salts) dissolve in water, ions dissociate

- Surrounded by $\mathrm{H}_{2} \mathrm{O}$ molecules
$-\mathrm{NaCl}(\mathrm{s}) \xrightarrow{\text { water }} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
(s) = solid; (aq) = aqueous solution

- An aqueous solution of NaCl conducts electricity
- Ions are free to move
- Substances that form ions in solution are called electrolytes
- NaCl is a strong electrolyte because it completely dissociates to form ions
- In a weak electrolyte, only a small amount that dissolves (< 5%) dissociates to form ions
- The rest stays in molecular form
- Acetic acid
$\mathrm{H}_{3} \mathrm{CCOOH} \leftrightarrows \mathrm{H}^{+}+\mathrm{H}_{3} \mathrm{CCOO}^{-}$
- Nonelectrolytes - dissolve in $\mathrm{H}_{2} \mathrm{O}$ but don' \dagger produce ions, e.g. sucrose, ethyl alcohol
- Polar molecules soluble
- Precipitation Reactions - two solutions are mixed and a precipitate forms

$$
\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})
$$

- Molecular equation
- $\mathrm{BaCl}_{2}(\mathrm{aq})$ actually $\mathrm{Ba}^{2+}(\mathrm{aq})$ and $2 \mathrm{Cl}^{-(a q)}$
- $\mathrm{BaCO}_{3}(s)$ insoluble
- Precipitates from solution as solid
- The dividing line between soluble and insoluble is approximately 0.01 M , i.e., in the range of 1 to $10 \mathrm{~g} / \mathrm{L}$
- If more than this dissolves, the salt is soluble

 Table 4.1 Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds

1. All common compounds of Group $1 \mathrm{~A}(1)$ ions ($\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, etc.) and ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble.
2. All common nitrates $\left(\mathrm{NO}_{3}{ }^{-}\right)$, acetates $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$, and most perchlorates $\left(\mathrm{ClO}_{4}{ }^{-}\right)$are soluble.
3. All common chlorides (Cl^{-}), bromides $\left(\mathrm{Br}^{-}\right)$, and iodides (I^{-}) are soluble, except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Cu}^{+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. All common sulfates $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ are soluble, except those of $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$, and Pb^{2+}.
5. All common metal hydroxides are insoluble, except those of Group 1A(1) and the larger members of Group 2A(2) (beginning with Ca^{2+}).
6. All common carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and phosphates ($\mathrm{PO}_{4}{ }^{3-}$) are insoluble, except those of Group 1A(1) and $\mathrm{NH}_{4}{ }^{+}$.
7. All common sulfides are insoluble, except those of Group 1A(1), Group 2A(2), and $\mathrm{NH}_{4}{ }^{+}$.

- Total ionic equation

$$
\begin{aligned}
& \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \\
& \mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-(\mathrm{aq})}
\end{aligned}
$$

- $\mathrm{CO}_{3}{ }^{2-}$ is a polyatomic ion
- Na^{+}and Cl^{-}are spectator ions
- Omit these ions when writing net ionic equation:

$$
\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})
$$

Table 2.5 Common Polyatomic lons*			
Formula	Name	Formula	Name
Cations			
$\mathrm{NH}_{4}{ }^{+}$	ammonium		
$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium		
Anions		Anions (cont.)	
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COO}^{-} \\ & \left(\text {(or } \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right) \\ & \mathrm{CN}^{-} \end{aligned}$	acetate	$\begin{aligned} & \mathrm{CrO}_{4}^{2-} \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \end{aligned}$	chromate dichromate
	cyanide	$\mathrm{O}_{2}{ }^{2-}$	peroxide
OH^{-}	hydroxide	$\mathrm{PO}_{4}{ }^{3-}$	phosphate
ClO^{-}	hypochlorite	$\mathrm{HPO}_{4}{ }^{2-}$	hydrogen
$\mathrm{ClO}_{2}{ }^{-}$	chlorite		phosphate
$\mathrm{ClO}_{3}{ }^{-}$	chlorate	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	dihydrogen phosphate
$\mathrm{ClO}_{4}{ }^{-}$	perchlorate		
$\mathrm{NO}_{2}{ }^{-}$	nitrite	$\mathrm{SO}_{3}{ }^{2-}$	sulfite
$\mathrm{NO}_{3}{ }^{-}$	nitrate	$\mathrm{SO}_{4}{ }^{2-}$	sulfate hydrogen sulfate (or bisulfate)
$\mathrm{MnO}_{4}{ }^{-}$	permanganate		
$\mathrm{CO}_{3}{ }^{2-}$	carbonate		
$\mathrm{HCO}_{3}{ }^{-}$	hydrogen carbonate (or bicarbonate)		
*Boldface ions are most common.			

- Balance the reaction and write net ionic equation:
$\mathrm{ZnCl}_{2}+\mathrm{KOH} \rightarrow \mathrm{KCl}+\mathrm{Zn}(\mathrm{OH})_{2}$
- Balance:
$\mathrm{ZnCl}_{2}+2 \mathrm{KOH} \rightarrow 2 \mathrm{KCl}+\mathrm{Zn}(\mathrm{OH})_{2}$
- Determine which are soluble and which are insoluble
$\mathrm{ZnCl}_{2}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow$ $2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$

 Table 4.1 Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds

1. All common compounds of Group $1 \mathrm{~A}(1)$ ions ($\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, etc.) and ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble.
2. All common nitrates $\left(\mathrm{NO}_{3}{ }^{-}\right)$, acetates $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$, and most perchlorates $\left(\mathrm{ClO}_{4}^{-}\right)$are soluble.
3. All common chlorides (Cl^{-}), bromides $\left(\mathrm{Br}^{-}\right)$, and iodides (I^{-}) are soluble, except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Cu}^{+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. All common sulfates $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ are soluble, except those of $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$, and Pb^{2+}.

Insoluble Ionic Compounds

1. All common metal hydroxides are insoluble, except those of Group 1A(1) and the larger members of Group 2A(2) (beginning with Ca^{2+}).
2. All common carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and phosphates ($\mathrm{PO}_{4}{ }^{3-}$) are insoluble, except those of Group 1A(1) and $\mathrm{NH}_{4}{ }^{+}$.
3. All common sulfides are insoluble, except those of Group 1A(1), Group 2A(2), and $\mathrm{NH}_{4}{ }^{+}$.

- This is a molecular equation
- Write total ionic equation:

$$
\begin{aligned}
& \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{~K}^{+}(\mathrm{aq})+ \\
& 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})
\end{aligned}
$$

- Write net ionic equation:

$$
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})
$$

Acid - Base Reactions

- Commonly define acid as substance that produces H^{+}
- In $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$attached to $\mathrm{H}_{2} \mathrm{O}$ molecule to produce hydronium ion

$$
\mathrm{H}^{+}+\underset{\mathrm{H}}{\mathrm{H}-\ddot{\mathrm{O}}:} \longrightarrow\left[\begin{array}{c}
\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H}-\mathrm{H} \\
\mathrm{H}
\end{array}\right]^{\oplus}
$$

- $\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-(a q)}$
- Arrow points only in forward direction because reaction goes to completion
- $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ acetic acid acetate
- Arrows both ways because only a small amount of $\mathrm{CH}_{3} \mathrm{COOH}$ dissociates, reaches equilibrium
- HCl - strong acid
- $\mathrm{CH}_{3} \mathrm{COOH}$ - weak acid
- Base - produces OH^{-}in $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{NaOH}(s) \text { water } \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- Only a small amount of NH_{3} is converted to NH_{4}^{+}
- NaOH - strong base
- NH_{3} - weak base

- Neutralization reaction

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

- $\mathrm{H}_{2} \mathrm{O}$ very stable, reaction goes to completion
- $\mathrm{HX}+\mathrm{MOH} \rightarrow \mathrm{MX}+\mathrm{H}_{2} \mathrm{O}$ acid base salt
$M="+"$ ion, cation $\quad X="-"$ ion, anion
- $2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
- Total ionic:

$$
2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{H}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+
$$ $2 \mathrm{NO}_{3}-(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}()$

- Net ionic:

$$
\begin{aligned}
& 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{H}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(!) \\
& \text { or } \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

- Acids will react with several salts to produce a gas that leaves the solution
$2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
- $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
- Net ionic:
- $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

In order for a reaction to occur, something must happen that is irreversible

1) Two soluble ions \rightarrow insoluble salt (precipitation)
2) $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ (acid - base, neutralization)
3) Reaction produces an insoluble gas, e.g. CO_{2}, that leaves the solution

- $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow$

$$
2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+\mathrm{K}^{+}+\mathrm{OH}^{-} \rightarrow
$$

- Exchange partners, double KOH

$$
\rightarrow 2 \mathrm{~K}^{+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}
$$

- Net ionic:

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Omega
$$

Strong acids
Hydrohalic acids $\mathrm{HCl}, \mathrm{HBr}$ and HI
Oxoacids $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, and HClO_{4}
Weak acids
Hydrohalic acids HF
HCN and $\mathrm{H}_{2} \mathrm{~S}$
Oxoacids such as $\mathrm{HClO}, \mathrm{HNO}_{2}$ and
$\mathrm{H}_{3} \mathrm{PO}_{4}$
Strong bases
$\mathrm{M}_{2} \mathrm{O}$ or MOH , where M is Group 1 A
MO or $\mathrm{M}(\mathrm{OH})_{2}$, where M is Group 2 A
Weak bases
Ammonia
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$

