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Astrophysical objects with unusually high mass to luminosity

ratios attract attention. The fifth brightest star in the constellation

Auriga, ε Aurigae, is such a case. The companion in this single-line

spectroscopic binary has evaded direct detection for over 175 years

1, 2. For the first time, closure-phase interferometric imaging has
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directly detected the eclipsing body, allowing us to measure the

properties of the companion. We used the MIRC four-telescope

beam combiner at the CHARA Array to obtain images of epsilon

Aurigae during ingress into eclipse during autumn 2009. These

images show the intrusion of a dark, elongated structure that re-

sembles the large disk as first discussed by Ludendorff 3, extended

by Kopal4, modeled by Huang5, and inferred with polarimetry ob-

tained by Kemp6 . These observations denitively exclude alternate

models suggested by Strömgren7 and Hack8 and provide impor-

tant constraints on the geometrically thin, optically thick disk size,

mass, and scale height. In essence, we have observed the beginning

of a 18-month long partial solar eclipse, 2000 light years away.

Data were collected using Georgia State University’s Center for High An-

gular Resolution Astronomy (CHARA) interferometer9 using the Michigan

Infra-Red Combiner (MIRC)10. The CHARA Array is located atop Mount

Wilson, CA and consists of six 1-m telescopes capable of 15 baselines ranging

from 34 m to 331 m. The longest baseline provides resolutions up to 0.5 mas

(milliarcseconds, 28 nano-degrees) at H-band (λ 1.50-1.74 µm).

All data presented in this Letter were collected during the start of the

2009-2011 eclipse on Nov. 2-4 and Dec. 2-4 (see Supplementary Table 1

for details). Each four telescope configuration provides six visibilities, four

closure phases, and four triple amplitudes simultaneously in each of MIRC’s

eight narrow spectral channels across the H-band. There were four pre-eclipse
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observations during 2008 Nov. - Dec. that verified the F-star is not highly

asymmetric and aided in planning the 2009 observations. These data are

consistent with the results obtained at PTI11 (a K-band, λ 2.00 - 2.38 µm,

uniform disk diameter of 2.27 ± 0.11 mas) and therefore are not rediscussed

in this Letter.

The data from MIRC were reduced and calibrated against seven cal-

ibration stars (see Supplementary Table 2) using the standard reduction

pipeline12, producing nightly OIFITS13 data files. Files from each of the

three consecutive nights of observation in 2009 were merged to produce a

single OIFITS file for each sequence of observations. The resulting UV plane,

power spectrum, and closure phase coverage (see Figure 1 for interpolated

UV plots) is arguably the most complete in optical interferometry to-date.

The 2009 data provided ample UV coverage for interferometric imag-

ing. Image reconstruction for the figures presented in this Letter were per-

formed using the BiSpectrum Maximum Entropy Method (BSMEM)15, 16

and Markov Chain Imager (MACIM)14 software packages. While the the-

ory behind image reconstruction is common to these packages, based on the

minimization of the χ2 plus a regularization function, they use significantly

different approaches to achieve it: a local gradient-based approach and global

stochastic minimization by simulated annealing, respectively. Despite the dif-

ferences in implementation12, 17, the images produced by these packages are

in remarkable agreement. This is proof of the soundness and reliability of the

reconstructed images and because of this fact, we present only the MACIM
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images in this Letter.

Figure 2 shows the 2009Nov and 2009Dec observations in which we see

a single object with a circular outline that is notably darker in the South-

East quadrant. In the December image, the overall size of the dark region

has grown, but the size of the circular object has remained nearly the same.

The Northern hemisphere of the circular object shows variations at the 15%

level that we believe approximate our photometric errors. The obscuration

in these images was not seen or implied by our previous data sets and we

interpret this object to be the theorized disk in the system. The compactness

of the disk across the two epochs provides the first direct evidence that the

disk is geometrically thin, but optically thick.

We attempted to model the obscuration using parabolas, ellipses, and

rectangles with and without smoothed edges using the reconstructed im-

ages as a guide. A satisfactory fit to the visibilities and closure phases

was obtained by using a smoothed-edge obscuring ellipse whose semi-major

axis was fixed to 6.10 mas (based on eclipse timing and well-known orbital

parameters19, 18), combined with a power-law limb-darkened stellar compo-

nent. The nine remaining parameters (stellar diameter, stellar limb-darkening

coefficient, ellipse semi-minor axis, ellipse position angle, ellipse smoothing

coefficient and ellipse centroid (x,y) for both 2009Nov and 2009Dec) were

simultaneously fit using a Levenberg-Marquardt least-squares minimization

algorithm. The combined fit had a reduced χ2 of 4.69 and predicted a F-star

Limb-darkened diameter of 2.41 ± 0.04 mas, or uniform-disk diameter of 2.10
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± 0.04 mas. The semi-minor axis for the ellipse is 0.61 ± 0.01 mas. The

ellipse has a position angle of 119.80 ± 0.74 degrees with a full width half

max smoothing length of 0.38 ± 0.05 mas. Between 2009Nov and 2009Dec,

the position of the ellipse centroid moved 0.62 ± 0.14 mas West and 0.34 ±

0.06 mas North.

Although the χ2 is high, the model does an excellent job of reproduc-

ing the observed drop in H-band flux (0.40 and 0.53 mag for 2009Nov and

2009Dec respectively), therefore we consider the model a good approxima-

tion for the leading edge of the disk. The ellipse model implies a North-West

motion between the two images that lies along a line with a position angle

of 296.82 ± 6.85 degrees. In the limiting case that the disk is considered

infinitely thin, the above parameters imply that the disk has a minimum

inclination, i, of 84.30 ± 0.15 degrees.

Adopting the Hipparcos-estimated distance 20 of 625 pc (parsec) we may

derive estimates of the disks physical extent. If the disk were to be viewed

edge-on (i.e. i = 90) then the maximum thickness of the disk, implied by

twice the semi-minor axis of the ellipse, is 0.76±0.02 AU (astronomical units).

The observed motion of the disk is 0.43 ± 0.08 AU , over the observation

interval, which implies a relative motion of 25.10 ± 4.65 km/s. Using the F-

star as the reference point and removing its known semi-amplitude, 15.00 ±

0.58 km/s 21, the velocity of the disk is 10.10 ± 4.68 km/s.

These velocities imply the F-star to companion mass ratio is 0.62 ± 0.12,

providing modest evidence that the companion is the more massive com-
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ponent in the system. Ultraviolet data implies the presence of a hot source

inside of the disk which can be fit19 by a B5V star. Adopting 5.9 ± 0.1 M� as

representative of a B5V star and treating the disk as having negligible mass,

we obtain 3.63 ± 0.68 M� for the mass of the F-star. The mass function21

for the system, 3.12, implies the lower end of the mass range is preferred.

The mass of the disk can be estimated from the volume and a plausible

density, if we assume a characteristic near-infrared opacity, κ, of 10 cm2 g−1

and adopt a range of characteristic length scales between the resolution of

CHARA to the size of the disk’s semi-major axis (i.e. 1.75 ± 0.87 AU), the

density of the disk is 3.82 ± 2.70 × 10−12 kg m−3. Modeling the disk as a

cylinder with a radius 3.81 ± 0.01 AU and height 0.76 ± 0.02 AU , the mass

of the disk would be 4.45 ± 3.15 × 10−7 M�, or about 0.15 Earth masses.

For interstellar dust to gas ratios, the total disk mass could rise to 15 Earth

masses, 4.45 ± 3.15 × 10−5 M�, which is far below masses for either stellar

component, making the disk mass dynamically negligible.

Direct imaging of the ε Aurigae system has provided validity to the disk

model for the previously unseen companion, first discussed by Kopal4 and

modeled by by Huang 5 and refined with polarimetry by Kemp et. al. 6.

With these images and simple model, we can specify the dimensions and

masses of the components in the system. In addition, the optically thick

but geometrically thin disk is unlike young stellar object disks, but more

nearly resembles debris disks. Further imaging will reveal details of the disk

structure, density gradients, and scale heights, demonstrating the power of
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closure-phase imaging when extensive UV coverage is possible.
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Figure 1: Interpolated Visibility Squared (colors) UV plots showing the base-

line coverage of the observations (2009 November 2-4, 2009 December 2-4)

and a clear asymmetry in the visibility pattern. The dashed circle corre-

sponds to the longest baseline at CHARA (331m) at the middle of the H-band

(λ 1.65 µm.) The eective position of the telescopes are shown as squares.
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Figure 2: The synthesized images from the 2009 Observations. The model

discussed in the text is superimposed on the image in white. A circle of

diameter of 2.27 mas is drawn for the F-star and the position of the ellipse

for each epoch is shown. CHARAs H-band resolution (0.5 mas) is shown

in the bottom right of the left gure. In order to represent our images in

terms of pre-eclipse surfacebrightness, we have assumed eclipse depths of

0.40 mag and 0.53 mag for 2009 Nov and Dec respectively based on the

ongoing AAVSOmonitoring.
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