Chapter 6

16. (a) We apply Newton's second law to the "downhill" direction:

$$
m g \sin \theta-f=m a
$$

where, using Eq. 6-11,

$$
f=f_{k}=\mu_{k} F_{N}=\mu_{k} m g \cos \theta
$$

Thus, with $\mu_{k}=0.600$, we have

$$
a=g \sin \theta-\mu_{k} \cos \theta=-3.72 \mathrm{~m} / \mathrm{s}^{2}
$$

which means, since we have chosen the positive direction in the direction of motion (down the slope) then the acceleration vector points "uphill"; it is decelerating. With $v_{0}=18.0 \mathrm{~m} / \mathrm{s}$ and $\Delta x=d=24.0 \mathrm{~m}$, Eq. 2-16 leads to

$$
v=\sqrt{v_{0}^{2}+2 a d}=12.1 \mathrm{~m} / \mathrm{s}
$$

18. We find the acceleration from the slope of the graph (recall Eq. 2-11): $a=4.5 \mathrm{~m} / \mathrm{s}^{2}$. Thus, Newton's second law leads to

$$
F-\mu_{k} m g=m a
$$

where $F=40.0 \mathrm{~N}$ is the constant horizontal force applied. With $m=4.1 \mathrm{~kg}$, we arrive at $\mu_{k}=0.54$.
30. The free-body diagrams are shown below. T is the magnitude of the tension force of the string, f is the magnitude of the force of friction on block A, F_{N} is the magnitude of the normal force of the plane on block $A, m_{A} \vec{g}$ is the force of gravity on body A (where $m_{A}=10 \mathrm{~kg}$), and $m_{B} \vec{g}$ is the force of gravity on block $B . \theta=30^{\circ}$ is the angle of incline. For A we take the $+x$ to be uphill and $+y$ to be in the direction of the normal force; the positive direction is chosen downward for block B.

Since A is moving down the incline, the force of friction is uphill with magnitude $f_{k}=$ $\mu_{k} F_{N}$ (where $\mu_{k}=0.20$). Newton's second law leads to

$$
\begin{aligned}
T-f_{k}+m_{A} g \sin \theta & =m_{A} a=0 \\
F_{N}-m_{A} g \cos \theta & =0 \\
m_{B} g-T & =m_{B} a=0
\end{aligned}
$$

for the two bodies (where $a=0$ is a consequence of the velocity being constant). We solve these for the mass of block B.

$$
m_{B}=m_{A}\left(\sin \theta-\mu_{k} \cos \theta\right)=3.3 \mathrm{~kg} .
$$

36. Using Eq. 6-16, we solve for the area

$$
A \frac{2 m g}{C \rho v_{t}^{2}}
$$

which illustrates the inverse proportionality between the area and the speed-squared. Thus, when we set up a ratio of areas - of the slower case to the faster case - we obtain

$$
\frac{A_{\text {slow }}}{A_{\text {fast }}}=\left(\frac{310 \mathrm{~km} / \mathrm{h}}{160 \mathrm{~km} / \mathrm{h}}\right)^{2}=3.75
$$

Chapter 7

1. (a) The change in kinetic energy for the meteorite would be

$$
\Delta K=K_{f}-K_{i}=-K_{i}=-\frac{1}{2} m_{i} v_{i}^{2}=-\frac{1}{2}\left(4 \times 10^{6} \mathrm{~kg}\right)\left(15 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2}=-5 \times 10^{14} \mathrm{~J}
$$

or $|\Delta K|=5 \times 10^{14} \mathrm{~J}$. The negative sign indicates that kinetic energy is lost.
(b) The energy loss in units of megatons of TNT would be

$$
-\Delta K=\left(5 \times 10^{14} \mathrm{~J}\right)\left(\frac{1 \text { megaton TNT }}{4.2 \times 10^{15} \mathrm{~J}}\right)=0.1 \text { megaton TNT. }
$$

(c) The number of bombs N that the meteorite impact would correspond to is found by noting that megaton $=1000$ kilotons and setting up the ratio:

$$
N=\frac{0.1 \times 1000 \text { kiloton TNT }}{13 \text { kiloton TNT }}=8
$$

3. (a) From Table 2-1, we have $v^{2}=v_{0}^{2}+2 a \Delta x$. Thus,

$$
v=\sqrt{v_{0}^{2}+2 a \Delta x}=\sqrt{\left(2.4 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}+2\left(3.6 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}\right)(0.035 \mathrm{~m})}=2.9 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

(b) The initial kinetic energy is

$$
K_{i}=\frac{1}{2} m v_{0}^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(2.4 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}=4.8 \times 10^{-13} \mathrm{~J} .
$$

The final kinetic energy is

$$
K_{f}=\frac{1}{2} m v^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(2.9 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}=6.9 \times 10^{-13} \mathrm{~J} .
$$

The change in kinetic energy is $\Delta K=6.9 \times 10^{-13} \mathrm{~J}-4.8 \times 10^{-13} \mathrm{~J}=2.1 \times 10^{-13} \mathrm{~J}$.
14. (a) From Eq. $7-6, F=W / x=3.00 \mathrm{~N}$ (this is the slope of the graph).
(b) Eq. $7-10$ yields $K=K_{i}+W=3.00 \mathrm{~J}+6.00 \mathrm{~J}=9.00 \mathrm{~J}$.
16. The forces are all constant, so the total work done by them is given by $W=F_{\text {net }} \Delta x$, where $F_{\text {net }}$ is the magnitude of the net force and Δx is the magnitude of the displacement. We add the three vectors, finding the x and y components of the net force:

$$
\begin{aligned}
F_{\text {net } x} & =-F_{1}-F_{2} \sin 50.0^{\circ}+F_{3} \cos 35.0^{\circ}=-3.00 \mathrm{~N}-(4.00 \mathrm{~N}) \sin 35.0^{\circ}+(10.0 \mathrm{~N}) \cos 35.0^{\circ} \\
& =2.13 \mathrm{~N} \\
F_{\text {net } y} & =-F_{2} \cos 50.0^{\circ}+F_{3} \sin 35.0^{\circ}=-(4.00 \mathrm{~N}) \cos 50.0^{\circ}+(10.0 \mathrm{~N}) \sin 35.0^{\circ} \\
& =3.17 \mathrm{~N} .
\end{aligned}
$$

The magnitude of the net force is

$$
F_{\mathrm{net}}=\sqrt{F_{\mathrm{net} x}^{2}+F_{\mathrm{net} y}^{2}}=\sqrt{(2.13 \mathrm{~N})^{2}+(3.17 \mathrm{~N})^{2}}=3.82 \mathrm{~N} .
$$

The work done by the net force is

$$
W=F_{\text {net }} d=(3.82 \mathrm{~N})(4.00 \mathrm{~m})=15.3 \mathrm{~J}
$$

where we have used the fact that $\vec{d} \| \vec{F}_{\text {net }}$ (which follows from the fact that the canister started from rest and moved horizontally under the action of horizontal forces - the resultant effect of which is expressed by $\vec{F}_{\text {net }}$).

