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PENNY-PEDESTRIAN REDUX

In an earlier Quiz, we calculated the velocity of a penny dropped from the 1250 foot tall Empire
State Building when it hits the sidewalk below. Now we consider the more realistic case by consid-
ering air resistance, or drag, on the penny. Assume you have a 2.50 gram penny, that tumbles as it
falls. Assume a Coefficient of Drag, C' = 0.75 (20 points total).

1. Estimate the effective cross-sectional area of the tumbling penny using a simple average of
minimum and maximum cross-sections.

ANSWER: The minimum cross-sectional area of the penny is “edge-on” and is simply A =
dpenny * tpenny, Where Dpenny is the diameter and Zpenny is the thickness. The maximum cross-
section is the circular cross-section when the penny is horizontal to the ground, Apu: =
7r(dpenny)2 The average of these is Acfr = (Amin + Amaz)/2. Many methods to measure or
estimate the diameter and thickness of a penny are acceptable. My methods gave A, =
3.14 x 107° m?, and Apep = 2.85 x 107 m?, so that A.pp = 1.58 x 1074 m?.

2. What is the terminal velocity of the penny?
ANSWER:

_3 2
2mg \/0 225 x 107 kg8 m/s” oo

CpAeps  \ 0.75(1.2 kg/m32.85 x 10~4 m?

3. How far does the penny fall before reaching terminal velocity? Here we want to see how far a
truly free-falling penny would fall before reaching 18.5 m/s. Kinematics tells us:
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4. Are you afraid of the penny-wielding tourists atop the ESB? No, because getting hit by a
penny falling from a great height is essentially no different than being hit by one dropped
from ~ 20 meters. It would probably hurt a bit, but not do any serious damage...

HALLIDAY, RESNICK, AND WALKER (HRW)
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Chapter 5

21. (a) The slope of each graph gives the corresponding cempof acceleration.
Thus, we finda, = 3.00 m/é anda, = —=5.00 m/& The magnitude of the acceleration
vector is thereforeaz\/(S.OO m/$ §+ € 5.00m/s%)= 5.83 m7, and the force is

obtained from this by multiplying with the mass~ 2.00 kg). The result i5 = ma
=11.7 N.

(b) The direction of the force is the same as tiidlhe acceleration:

6=tan" [(-5.00 m/$)/(3.00 m/4)] = —59.0.

32. We resolve this horizontal force into apprajgrieomponents.

(@) Newton’s second law applied to theaxis
produces

Fcosf-mg sid=ma.

Fora =0, this yieldd = 566 N.

(b) Applying Newton’s second law to tgeaxis (where there is no acceleration), we have
Fy —Fsinfd-mg cosfd= C(

which yields the normal fordey = 1.13x 10° N.

51. We apply Newton’s second law first to the thokecks as a single system and then to
the individual blocks. Thextdirection is to the right in Fig. 5-49.

(a) Withmsys=m + mp + mg = 67.0 kg, we apply Eq. 5-2 to tkenotion of the system —
in which case, there is only one fofige= + T, i . Therefore,

T,=ma = 65.0N= (67.0kga

which yieldsa = 0.970 m/$for the system (and for each of the blocks indiaity).
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(b) Applying Eq. 5-2 to block 1, we find
T,=ma= (12.0kg)( 0.970mA) = 11.61

(c) In order to findT,, we can either analyze the forces on block 3 ocavetreat blocks
1 and 2 as a system and examine its forces. Weseltbe latter.

T, =(m+m,)a = (12.0kg+ 24.0kg( 0.970nf$= 3491

55. The free-body diagrams fon and m, are shown in the figures below. The only

forces on the blocks are the upward tendicand the downward gravitational forces
F, =mgand F, =m,g. Applying Newton’s second law, we obtain:

y y
T-mg=ma
mg-T =m,a AT AT
which can be solved to yield Tﬁ Iml n, @ lﬁ
F
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Substituting the result back, we have

28
m+m,

(a) Withm =1.3 kgand m, =2.8 kg, the acceleration becomes

_(2.80kg-1.30k
2.80kg+ 1.30k

2](9.80 m/$ = 3.59 mfs

(b) Similarly, the tension in the cord is

T = 21.30kg)(2.80kg)

9.80m/E = 17.4 N
1.30kg+ 2.80kg
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73. Although the full specification of,,, = md in this situation involves botk andy

axes, only thex-application is needed to find what this particyd@oblem asks for. We
note thata, = 0 so that there is no ambiguity denotsmgimply asa. We choose xto the
right and 4 up. We also note that thecomponent of the rope’s tension (acting on the
crate) is

Fx = Fcosf= (450 N) cos 38° = 355 N,

and the resistive force (pointing in thedirection) has magnitude= 125 N.
(a) Newton’s second law leads to

F-f=ma=as= 355 N- 125N—0.74m/§

310 kg

(b) In this case, we use Eq. 5-12 to find the mass:W/g = 31.6 kg. Now, Newton’s
second law leads to

T -f=ma = a=S2NT1BN_J5 e
31.6 kg

74. Since the velocity of the particle does notngea it undergoes no acceleration and
must therefore be subject to zero net force. Theeef

Fu=Ft Fy+ F=0.

Thus, the third forceF, is given by

F,=-F - F,= —(2i + 3] - 2k) N- (-5i + 8] - 2k N=(3i - 1dj+ 4K N.

The specific value of the velocity is not usedha tomputation.
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Chapter 6

2. To maintain the stone’s motion, a horizontaté(in the x direction) is needed that
cancels the retarding effect due to kinetic fristid\pplying Newton’s second to the
andy axes, we obtain

respectively. The second equation yields the nofarak Fy = mg, so that (using Eq. 6-
2) the kinetic friction becomds = z4 mg. Thus, the first equation becomes

F-umg=ma=0

where we have set= 0 to be consistent with the idea that the haotizbvelocity of the
stone should remain constant. With= 20 kg ang = 0.80, we findF = 1.6x 10° N.

12. (a) Using the result obtained in Sample Prolge® the maximum angle for which
static friction applies is

6. =tan*y =tan' 0.63= 32
This is greater than the dip angle in the probleothe block does not slide.

(b) We analyze forces in a manner similar to thats in Sample Problem 6-3, but with
the addition of a downhill forcE.

F+mgsin@-f =ma=0

s, max

F, —mgcosé = 0.

Along with Eq. 6-1 fs max = (Fn) We have enough information to solve fér With
@ =24°andm = 1.8x 10’ kg, we find

F=mg(x, cosd- sing)= 3.6 10 N



