Chapter 4

1. The initial position vector \vec{r}_{o} satisfies $\vec{r}-\vec{r}_{\mathrm{o}}=\Delta \vec{r}$, which results in

$$
\vec{r}_{\mathrm{o}}=\vec{r}-\Delta \vec{r}=(3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}) \mathrm{m}-(2.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}) \mathrm{m}=(-2.0 \mathrm{~m}) \hat{\mathrm{i}}+(6.0 \mathrm{~m}) \hat{\mathrm{j}}+(-10 \mathrm{~m}) \hat{\mathrm{k}} .
$$

5. Using Eq. 4-3 and Eq. 4-8, we have

$$
\vec{v}_{\text {avg }}=\frac{(-2.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}) \mathrm{m}-(5.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}) \mathrm{m}}{10 \mathrm{~s}}=(-0.70 \hat{\mathrm{i}}+1.40 \hat{\mathrm{j}}-0.40 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{s}
$$

13. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction of the velocity computed in part (b), since that represents the asked-for tangent line.
(a) Plugging into the given expression, we obtain

$$
\left.\vec{r}\right|_{t=2.00}=[2.00(8)-5.00(2)] \hat{\mathrm{i}}+[6.00-7.00(16)] \hat{\mathrm{j}}=(6.00 \hat{\mathrm{i}}-106 \hat{\mathrm{j}}) \mathrm{m}
$$

(b) Taking the derivative of the given expression produces

$$
\vec{v}(t)=\left(6.00 t^{2}-5.00\right) \hat{i}-28.0 t^{3} \hat{j}
$$

where we have written $v(t)$ to emphasize its dependence on time. This becomes, at $t=2.00 \mathrm{~s}, \vec{v}=(19.0 \hat{\mathrm{i}}-224 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$.
(c) Differentiating the $\vec{v}(t)$ found above, with respect to t produces $12.0 t \hat{i}-84.0 t^{2} \hat{\mathrm{j}}$, which yields $\vec{a}=(24.0 \hat{\mathrm{i}}-336 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$ at $t=2.00 \mathrm{~s}$.
(d) The angle of \vec{v}, measured from $+x$, is either

$$
\tan ^{-1}\left(\frac{-224 \mathrm{~m} / \mathrm{s}}{19.0 \mathrm{~m} / \mathrm{s}}\right)=-85.2^{\circ} \text { or } 94.8^{\circ}
$$

where we settle on the first choice (-85.2°, which is equivalent to 275° measured counterclockwise from the $+x$ axis) since the signs of its components imply that it is in the fourth quadrant.
$\theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}$.
21. (a) From Eq. 4-22 (with $\theta_{0}=0$), the time of flight is

$$
t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2(45.0 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=3.03 \mathrm{~s} .
$$

(b) The horizontal distance traveled is given by Eq. 4-21:

$$
\Delta x=v_{0} t=(250 \mathrm{~m} / \mathrm{s})(3.03 \mathrm{~s})=758 \mathrm{~m} .
$$

(c) And from Eq. 4-23, we find

$$
\left|v_{y}\right|=g t=\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(3.03 \mathrm{~s})=29.7 \mathrm{~m} / \mathrm{s} .
$$

25. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that $v_{0 y}=0$ and $v_{0 x}=v_{0}=10 \mathrm{~m} / \mathrm{s}$.
(a) With the origin at the initial point (where the dart leaves the thrower's hand), the y coordinate of the dart is given by $y=-\frac{1}{2} g t^{2}$, so that with $y=-P Q$ we have $P Q=\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.19 \mathrm{~s})^{2}=0.18 \mathrm{~m}$.
(b) From $x=v_{0} t$ we obtain $x=(10 \mathrm{~m} / \mathrm{s})(0.19 \mathrm{~s})=1.9 \mathrm{~m}$.
26. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that $v_{0 y}=0$ and $v_{0 x}=v_{0}=161 \mathrm{~km} / \mathrm{h}$. Converting to SI units, this is $v_{0}=44.7 \mathrm{~m} / \mathrm{s}$.
(a) With the origin at the initial point (where the ball leaves the pitcher's hand), the y coordinate of the ball is given by $y=-\frac{1}{2} g t^{2}$, and the x coordinate is given by $x=v_{0} t$. From the latter equation, we have a simple proportionality between horizontal distance and time, which means the time to travel half the total distance is half the total time. Specifically, if $x=18.3 / 2 \mathrm{~m}$, then $t=(18.3 / 2 \mathrm{~m}) /(44.7 \mathrm{~m} / \mathrm{s})=0.205 \mathrm{~s}$.
(b) And the time to travel the next $18.3 / 2 \mathrm{~m}$ must also be 0.205 s . It can be useful to write the horizontal equation as $\Delta x=v_{0} \Delta t$ in order that this result can be seen more clearly.
(c) From $y=-\frac{1}{2} g t^{2}$, we see that the ball has reached the height of $\left|-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.205 \mathrm{~s})^{2}\right|=0.205 \mathrm{~m}$ at the moment the ball is halfway to the batter.
(d) The ball's height when it reaches the batter is $-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.409 \mathrm{~s})^{2}=-0.820 \mathrm{~m}$, which, when subtracted from the previous result, implies it has fallen another 0.615 m . Since the value of y is not simply proportional to t, we do not expect equal time-intervals to correspond to equal height-changes; in a physical sense, this is due to the fact that the initial y-velocity for the first half of the motion is not the same as the "initial" y-velocity for the second half of the motion.
27. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find centripetal acceleration a.
(a) $v=2 \pi r / T=2 \pi(20 \mathrm{~km}) / 1.0 \mathrm{~s}=126 \mathrm{~km} / \mathrm{s}=1.3 \times 10^{5} \mathrm{~m} / \mathrm{s}$.
(b) The magnitude of the acceleration is

$$
a=\frac{v^{2}}{r}=\frac{(126 \mathrm{~km} / \mathrm{s})^{2}}{20 \mathrm{~km}}=7.9 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}
$$

(c) Clearly, both v and a will increase if T is reduced.
62. (a) The circumference is $c=2 \pi r=2 \pi(0.15 \mathrm{~m})=0.94 \mathrm{~m}$.
(b) With $T=(60 \mathrm{~s}) / 1200=0.050 \mathrm{~s}$, the speed is $v=c / T=(0.94 \mathrm{~m}) /(0.050 \mathrm{~s})=19 \mathrm{~m} / \mathrm{s}$. This is equivalent to using Eq. 4-35.
(c) The magnitude of the acceleration is $a=v^{2} / r=(19 \mathrm{~m} / \mathrm{s})^{2} /(0.15 \mathrm{~m})=2.4 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$.
(d) The period of revolution is $(1200 \mathrm{rev} / \mathrm{min})^{-1}=8.3 \times 10^{-4} \mathrm{~min}$ which becomes, in SI units, $T=0.050 \mathrm{~s}=50 \mathrm{~ms}$.

Chapter 5

2. We apply Newton's second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force applied on the chopping block is $\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}$, where the vector addition is done using unit-vector notation. The acceleration of the block is given by $\vec{a}=\left(\vec{F}_{1}+\vec{F}_{2}\right) / m$.
(a) In the first case

$$
\vec{F}_{1}+\vec{F}_{2}=[(3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}}]+[(-3.0 \mathrm{~N}) \hat{\mathrm{i}}+(-4.0 \mathrm{~N}) \hat{\mathrm{j}}]=0
$$

so $\vec{a}=0$.
(b) In the second case, the acceleration \vec{a} equals

$$
\frac{\vec{F}_{1}+\vec{F}_{2}}{m}=\frac{((3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}})+((-3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}})}{2.0 \mathrm{~kg}}=\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
$$

(c) In this final situation, \vec{a} is

$$
\frac{\vec{F}_{1}+\vec{F}_{2}}{m}=\frac{((3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}})+((3.0 \mathrm{~N}) \hat{\mathrm{i}}+(-4.0 \mathrm{~N}) \hat{\mathrm{j}})}{2.0 \mathrm{~kg}}=\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}
$$

69. (a) We quote our answers to many figures - probably more than are truly "significant." Here $(7682 \mathrm{~L})(" 1.77 \mathrm{~kg} / \mathrm{L} ")=13597 \mathrm{~kg}$. The quotation marks around the 1.77 are due to the fact that this was believed (by the flight crew) to be a legitimate conversion factor (it is not).
(b) The amount they felt should be added was $22300 \mathrm{~kg}-13597 \mathrm{~kg}=87083 \mathrm{~kg}$, which they believed to be equivalent to $(87083 \mathrm{~kg}) /(" 1.77 \mathrm{~kg} / \mathrm{L} ")=4917 \mathrm{~L}$.
(c) Rounding to 4 figures as instructed, the conversion factor is $1.77 \mathrm{lb} / \mathrm{L} \rightarrow 0.8034 \mathrm{~kg} / \mathrm{L}$, so the amount on board was $(7682 \mathrm{~L})(0.8034 \mathrm{~kg} / \mathrm{L})=6172 \mathrm{~kg}$.
(d) The implication is that what as needed was $22300 \mathrm{~kg}-6172 \mathrm{~kg}=16128 \mathrm{~kg}$, so the request should have been for $(16128 \mathrm{~kg}) /(0.8034 \mathrm{~kg} / \mathrm{L})=20075 \mathrm{~L}$.
(e) The percentage of the required fuel was

$$
\frac{7682 \mathrm{~L}(\text { on board })+4917 \mathrm{~L}(\text { added })}{(22300 \mathrm{~kg} \text { required }) /(0.8034 \mathrm{~kg} / \mathrm{L})}=45 \%
$$

