PHYS 1211 University Physics I

Winter Quarter, 2007

INSTRUCTOR_

Barry L. Zink Assistant Professor Office: Physics 404 (303) 871-3025 barry.zink@du.edu http://portfolio.du.edu/bzink2

Office Hours: M&F 11am-12pm Th 2-4pm (or by appointment)

HALLIDAY, RESNICK, AND WALKER (HRW)_

Re-read Chapter 7?

Complete the following **PROBLEMS** from HRW Chapter 7: 18, 29, 34 (each is worth 10 points)

ALSO

Read Chapter 8.

Complete the following **PROBLEMS** from HRW Chapter 8: 6, 9, 31, 110, 125 (each is worth 10 points)

The work life of comets...___

Several times in class I have envoked Newton's law of gravitation, which states that the magnitude of the gravitational force on an object with mass m_c exerted by a second object with mass M_s is given by:

$$F = \frac{Gm_c M_s}{r^2},$$

where $G = 6.67 \times 10^{-11}$ N m²/kg². The direction the force acts is always along the line between the two objects (if you set the origin of a spherical coordinate system at the center of one mass, the direction is radial (\hat{r}) and pointing at the second object.

Consider a comet with mass $m_c = 8.00 \times 10^{13}$ kg that is initially at rest at a distance 100 astronomical units (abbreviated a.u., the mean distance between the earth and the sun) from the sun. The sun's mass is $M_s = 1.99 \times 10^{30}$ kg. If the force of gravity causes the comet to eventually "fall" toward the sun, eventually the comet and sun will collide. Answer the following for 20 points.

- 1. How much work does gravity do on the comet to cause the collison?
- 2. If we assume mechanical energy is conserved, what is the velocity of the comet when it hits the sun?
- 3. What is the comet's initial potential energy?