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http://portfolio.du.edu/bzink2 (or by appointment)

The Flying Train

The world record speed for a train (581 km/h) was set recently by a Japanese Magnetically-
levitated, or Mag-Lev Train. Several other countries are researching or already using these “flying
trains” for high-speed rail travel. They use the repulsive force between large magnets (sometimes
electromagnets made from high-temperature superconducting materials) to float the train off a
special track. As a result the vehicle can move with no friction. We will discuss friction and
magnetic forces later in the course. For now, let’s examine the kinematics of these trains.

One developer of this technology states that, from a standing start, its train reaches 300 km/h
in a distance of only 5 km. A current state-of-the-art high speed train (for example the German
ICE) requires 30 km to reach the same speed.

Answer the following (30 points total):

1. How fast is 300 km/h in miles-per-hour? How about in meters per second?[1 point]

Simple unit conversions:

300
km

h
·

0.621 mi

km
= 186

mi

h

and

300
km

h
·

1 h

3600 s
·

1000 m

1 km
= 83.3

m

s

2. Calculate the acceleration of each train, assuming it remains constant until 300
km/h is reached. [3 points]

Here we know initial and final velocities, and initial and final positions: v0 = 0 m/s, vmax =
83.3 m/s, x0 = 0 m, x = 5000 m. Use:

v2 = v2
0 + 2a (x − x0)

Solve for a:

a =
v2

− v2
0

2 (x − x0)

For the Mag-Lev train,

aML =
(83.3 m/s)2 − (0 m/s)2

2 (5000 m − 0 m)
= 0.694

m

s2

1
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and for the ICE,

aICE =
(83.3 m/s)2 − (0 m/s)2

2 (30, 000 m − 0 m)
= 0.116

m

s2

3. Let’s pretend RTD is considering installing a high-speed train between Denver
and Boulder, and have hired you to consult on the choice between a Mag-Lev and
an ICE-type train. Calculate the time of the Denver-Boulder express trip (no
stops) in the Mag-Lev train, assuming the route is 30 miles long, and that the
acceleration is the same for starting and stopping the train. [5 points]

First, to understand this a bit better sketch the velocity of the ML train as a function of time:

We have constant acceleration, aML, which means linearly increasing velocity, up to the max-
imum speed of 83.3 m/s. This takes some period of time, t1. Then we travel along at top
speed for some time, t2. Then we have constant (negative) acceleration back to zero velocity,
which takes some time t3 = t1. Now we calculate these times separately. Because velocity is
constant during time t2, and we know that the distance covered during this time is the total
length of the trip (30 miles = 48 km) minus the 10 km we are accelerating and decelerating,
we simply use the definition of velocity to determine

t2 =
distance

vmax

=
38, 000 m

83.3 m/s
= 456 s = 7.6 minutes

Now we get t1 from the constant acceleration equations,

v = v0 + at → t1 =
v − v0

a
=

83.3 m/s − 0 m/s

0.69 m/s2
= 120 s = 2 minutes

So our total trip time in the ML train is 7.6 min + 2 (2 min) = 11.6 min

4. Now determine the time for the trip in the ICE, but remember this wheeled train
needs 30 km to reach top speed, and 30 km to stop from top speed. You will
find that puts the train well beyond Boulder. To stop the train in Boulder where
should you start slowing down? What is the highest speed the ICE achieved?
How long is the trip in the ICE? [5 points]

Again start with a plot. Remember we have to be at zero velocity in Boulder! To reach top
speed would take 30 km, and then to reach zero another 30 km, putting our passengers well
north of Boulder!
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In the low acceleration ICE train we have constant acceleration for half the distance, then
constant decceleration for the remaining half. The first half of the trip takes:

x − x0 = v0t +
1

2
at2 → t =

√

2x

a
=

√

2 (24, 000 m)

0.12 m/s2
= 645 s = 10.8 minutes

So the total travel time in the ICE is 22 minutes. We can calculate the maximum speed from:

v = v0 + at → v = (0 m/s) + (0.126 m/s2) · (645 s) = 74.6 m/s = 269 km/h

5. Now consider a non-express route that stops in Westminster (10 miles), Broom-
field (20 miles), and Superior (25 miles) before reaching Boulder. What is the
total time of the non-express Denver-Boulder trip for each train? [10 points]

This trip breaks into two 10 mile (16.1 km) legs, Denver-Westminster and Westminster-
Broomfield, and two 5 mile (8.05 km) legs, Broomfield-Superior and Superior-Boulder. We
calculate the time for each leg, for each train using the same method as above.

For the ML train, each 16.1 km leg breaks into 5 km of acceleration, 6.1 km of constant
300 kph travel, and 5 km of deceleration. We already know t1 = 120 s = 2 min is the
time for acceleration (or deceleration). The travel time for 6.1 km at 300 kph is then t5 =
(6.1 km)/(300 km/h) = 1.22 min. Each 16.1 km leg then takes 5.22 minutes.

On the short 8.05 km leg, even the ML train can’t reach top speed. We use the same math
here as in number 4. The time for acceleration (or deceleration) is:

t6 =

√

2x

a
=

√

8.05 × 103 m

0.694 m/s2
= 108 s

So the total time for the short leg in the ML train is 2t6 = 216 s = 3.6 min. The total time
for 2 long legs and 2 short legs is 2 × (5.22 min) + 2 × (3.6 min) = 17.6 min.

For the ICE train, we again never reach top speed. For the long leg the time for acceleration
(or deceleration) is :

t7 =

√

2x

a
=

√

16.1 × 103 m

0.116 m/s2
= 373 s

and for the short leg:

t8 =

√

2x

a
=

√

8.05 × 103 m

0.116 m/s2
= 263 s

So that the total non-express route takes 2 · (2t7) + 2 · (2t8) = 2540 s = 42 min
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6. For comparison, how long do the current Express and non-express RTD buses
take to travel from Denver to Boulder? (Route BX and B, www.rtd-denver.com)
[1 point]

Currently, the express bus takes between 30 and 40 minutes and the non-express 60 minutes
or more.

7. What is your final recommendation to RTD? Consider that the Mag-Lev is slightly
more costly than the ICE, but either one is considerably more expensive than the
bus system. [5 points]

My final recommendation would be to either spend a little more and get the ML system, or
stick with the buses, perhaps making a smaller investment to add more buses and add or
upgrade HOV lanes.
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HRW Chapter 2 Problems 
 
 
 
1. We use Eq. 2-2 and Eq. 2-3. During a time tc when the velocity remains a positive 
constant, speed is equivalent to velocity, and distance is equivalent to displacement, with 
∆x = v tc. 
 
(a) During the first part of the motion, the displacement is ∆x1 = 40 km and the time 
interval is 

t1

40
133= =(
.

 km)

(30 km / h)
 h.  

 
During the second part the displacement is ∆x2 = 40 km and the time interval is 
 

t2

40
0 67= =(
.

 km)

(60 km / h)
 h. 

 
Both displacements are in the same direction, so the total displacement is  
 

∆x = ∆x1 + ∆x2 = 40 km + 40 km = 80 km. 
 
The total time for the trip is t = t1 + t2 = 2.00 h. Consequently, the average velocity is 
 

vavg

 km)

(2.0 h)
 km / h.= =(80

40  

 
(b) In this example, the numerical result for the average speed is the same as the average 
velocity 40 km/h. 
 
(c) As shown below, the graph consists of two contiguous line segments, the first having a 
slope of 30 km/h and connecting the origin to (t1, x1) = (1.33 h, 40 km) and the second 
having a slope of 60 km/h and connecting (t1, x1) to (t, x) = (2.00 h, 80 km). From the 
graphical point of view, the slope of the dashed line drawn from the origin to (t, x) 
represents the average velocity.  
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2. Average speed, as opposed to average velocity, relates to the total distance, as opposed 
to the net displacement. The distance D up the hill is, of course, the same as the distance 
down the hill, and since the speed is constant (during each stage of the motion) we have 
speed = D/t. Thus, the average speed is 
 

D D

t t

D
D
v

D
v

up down

up down

up down

+
+

=
+

2
 

 
which, after canceling D and plugging in vup = 40 km/h and vdown = 60 km/h, yields 48 
km/h for the average speed. 
 
3. The speed (assumed constant) is v = (90 km/h)(1000 m/km) ⁄ (3600 s/h) = 25 m/s. Thus, 
in 0.50 s, the car travels (0.50 s)(25 m/s) ≈ 13 m.  
 
5. Using x = 3t – 4t2 + t3 with SI units understood is efficient (and is the approach we will 
use), but if we wished to make the units explicit we would write  
 

x = (3 m/s)t – (4 m/s2)t2 + (1 m/s3)t3. 
 
We will quote our answers to one or two significant figures, and not try to follow the 
significant figure rules rigorously. 
 
(a) Plugging in t = 1 s yields x = 3 – 4 + 1 = 0.  
 
(b) With t = 2 s we get x = 3(2) – 4(2)2+(2)3 = –2 m.  
 
(c) With t = 3 s we have x = 0 m. 
 
(d) Plugging in t = 4 s gives x = 12 m.  
 
For later reference, we also note that the position at t = 0 is x = 0. 
 
(e) The position at t = 0 is subtracted from the position at t = 4 s to find the displacement 
∆x = 12 m. 
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(f) The position at t = 2 s is subtracted from the position at t = 4 s to give the displacement 
∆x = 14 m. Eq. 2-2, then, leads to 
 

avg

14 m
7 m/s.

2 s

x
v

t

∆= = =
∆

 

 
(g) The horizontal axis is 0 ≤ t ≤ 4 with SI units understood. 
 
Not shown is a straight line drawn from the point at (t, x) = (2, –2) to the highest point 
shown (at t = 4 s) which would represent the answer for part (f). 
 

 
 
 
18. We use the functional notation x(t), v(t) and a(t) and find the latter two quantities by 
differentiating: 
 

v t
dx t

t
t a t

dv t

dt
tb g b g b g b g

= = − + = = −15 20 302 and  

 
with SI units understood. These expressions are used in the parts that follow. 
 
(a) From 0 15 202= − +t , we see that the only positive value of t for which the particle is 

(momentarily) stopped is t = =20 15 12/ . s. 
 
(b) From 0 = – 30t, we find a(0) = 0 (that is, it vanishes at t = 0). 
 
(c) It is clear that a(t) = – 30t is negative for t > 0  
 
(d) The acceleration a(t) = – 30t is positive for t < 0. 
 
(e) The graphs are shown below. SI units are understood. 
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25. The constant acceleration stated in the problem permits the use of the equations in 
Table 2-1. 
 
(a) We solve v = v0 + at for the time: 
 

t
v v

a
= − = × = ×0

1
10

8
63 0 10

98
31 10

( .

.
.

 m / s)

 m / s
 s

2
 

 
which is equivalent to 1.2 months. 
 
(b) We evaluate x x v t at= + +0 0

1
2

2, with x0 = 0. The result is 
 

( )2 6 2 131
9.8 m/s (3.1 10 s) 4.6 10  m .

2
x = × = ×  

 
 
35. (a) From the figure, we see that x0 = –2.0 m. From Table 2-1, we can apply x – x0 = v0t 
+ 1

2 at2 with t = 1.0 s, and then again with t = 2.0 s. This yields two equations for the two 

unknowns, v0 and a: 
 

( ) ( ) ( )

( ) ( ) ( )

2

0

2

0

1
0.0 2.0 m 1.0 s 1.0 s

2
1

6.0 m 2.0 m 2.0 s 2.0 s .
2

v a

v a

− − = +

− − = +
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Solving these simultaneous equations yields the results v0 = 0 and a = 4.0 m/s2.  
 
(b) The fact that the answer is positive tells us that the acceleration vector points in the +x 
direction. 


