PHYS 1211 University Physics I

Problem Set 3
Winter Quarter, 2007
Instructor
Barry L. Zink
Assistant Professor
Office: Physics 404
(303) 871-3025

Office Hours:
M\&F 11am-12pm
Th 2-4pm
barry.zink@du.edu
http://portfolio.du.edu/bzink2
(or by appointment)
Halliday, Resnick, and Walker (HRW)
Read Chapter 3.
Complete the following problems from HRW Chapter 3: 1, 2, 6, 10, 12, 33, 41, 45 (each is worth 10 points)

And All That.
My favorite method of computing the vector product is the determinant method discussed in HRW Appendix E. Here we write that:

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|
$$

where for example $\vec{a}=a_{x} \hat{i}+a_{x} \hat{j}+a_{x} \hat{k}$. Answer the following (20 points total):

1. Show that evaluating this determinant gives an expression equivalent to Eq. 3-30 of HRW.

Now we consider a special vector called "del," written $\vec{\nabla}$. This vector will seem like a strange beast, because instead of numbers (such as those represented by a_{x}, and b_{x} and so on) this vector has derivatives:

$$
\vec{\nabla}=\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k} .
$$

Here the use of ∂ instead of a regular d means that the derivative is taken only with respect to the indicated variable, for example:

$$
\frac{\partial}{\partial x} x y^{2}=y^{2}, \quad \frac{\partial}{\partial y} x y^{2}=2 x y, \quad \frac{\partial}{\partial z} x y^{2}=0
$$

2. Write the vector product $\vec{\nabla} \times \vec{E}$ as a determinant.
3. If $\vec{E}=x \hat{i}+y \hat{j}+z \hat{k}$, what is $\vec{\nabla} \times \vec{E}$?
4. For the same \vec{E}, what is $\vec{\nabla} \cdot \vec{E}$?
