PHYS 1211 University Physics I

Winter Quarter, 2007

Problem Set 1
SOLUTIONS

Instructor
Barry L. Zink
Assistant Professor
Office: Physics 404
(303) 871-3025

Office Hours:
M\&F 11am-12pm
Th $2-4 \mathrm{pm}$
barry.zink@du.edu
http://portfolio.du.edu/bzink2
(or by appointment)
Fermi Problems

I picked the following four Fermi Problems:

1. How many bricks are in University Hall?

Assume: - A simple rectangular building (try to make it slightly larger to take curved parts into account)

- We are counting only exterior bricks.
- U. Hall is 100 meters by 60 meters, 3 stories tall, and that each story is 7 meters (roughly 20 m total height)
- Each of these rather large bricks is $1 / 2 \mathrm{~m}$ wide and $1 / 4 \mathrm{~m}$ tall

Then: The total wall surface area is:

$$
2(100 \mathrm{~m} \times 20 \mathrm{~m})+2(60 \mathrm{~m} \times 20 \mathrm{~m})=6400 \mathrm{~m}^{2} \cdot 0.125 \frac{\text { brick }}{\mathrm{m}^{2}}=51,200 \text { bricks }
$$

4. How many miles of Interstate highway are there in the continental United States?

Assume: - The U. S. is a rectangle 3500 miles East-West by 2500 miles North-South.

- There are roughly 6 main East-West interstate routes
- There are roughly 10 main North-South interstate routes

Then:

$$
6(3500 \text { miles })+10(2500 \text { miles })=46,000 \text { miles }
$$

6. How much money was Todd Helton (the first baseman for the Colorado Rockies) paid per swing last baseball season?

Assume: - Helton was paid roughly $\$ 12$ Million last year

- We will count swings only in a game, assuming he doesn't get paid to practice.
- He played in all 162 games, and had 5 plate appearances (PA) in each game
- The number of swings per plate appearance is a bit tricky, since good hitters tend to foul off many pitches if they get to a 2 strike count. We will say he swung on average 5 times per PA.

Then:

$$
\frac{12 \times 10^{6} \text { dollars }}{\text { season }} \cdot \frac{1 \text { season }}{162 \text { games }} \cdot \frac{1 \text { game }}{5 \mathrm{PA}} \cdot \frac{\mathrm{PA}}{5 \text { swings }} \approx 3,000 \frac{\text { dollar }}{\text { swing }}
$$

7. How many times has Britney Spears performed the song "Oops...I did it again" live?

Assume: - The song debuted in roughly 2000, though I wasn't paying much attention... - In those 6 years, assume Britney toured about 3 times.

- Each tour runs for 3 months, during which Britney performs 4 nights a week
- Each performance includes "Oops..."

Then:

$$
3 \text { tours } \cdot \frac{3 \text { months }}{\text { tour }} \cdot \frac{4 \text { weeks }}{\text { month }} \cdot \frac{4 \text { concerts }}{\text { week }} \cdot \frac{1 \text { Oops }}{\text { concert }} \approx 140 \text { Oops }
$$

Halliday, Resnick, and Walker (HRW), Chapter 1 \qquad

1. How many microns in 1.0 km ?

$$
1 \mathrm{~km} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{10^{6} \mu \mathrm{~m}}{1 \mathrm{~m}}=1 \times 10^{9} \mu \mathrm{~m}
$$

What fraction of a centimeter is a micron?

$$
1 \mu \mathrm{~m} \cdot \frac{10^{-6} \mathrm{~m}}{1 \mu \mathrm{~m}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=1 \times 10^{-4} \mathrm{~cm}=\frac{1}{10,000} \text { of a } \mathrm{cm}
$$

How many microns in a yard?

$$
1 \mathrm{yd} \cdot \frac{36 \mathrm{in}}{\mathrm{yd}} \cdot \frac{1 \mathrm{~m}}{39.4 \mathrm{in}} \cdot \frac{10^{6} \mu \mathrm{~m}}{1 \mathrm{~m}}=913,706 \mu \mathrm{~m}
$$

5. Earth is a sphere with radius $R=6.37 \times 10^{6} \mathrm{~m}=6.37 \times 10^{3} \mathrm{~km}$
a) Circumference in km?

$$
2 \pi R=4.00 \times 10^{7} \mathrm{~m} \cdot \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=4.00 \times 10^{4} \mathrm{~km}
$$

b) Surface area in km^{2} ?

$$
4 \pi R^{2}=4 \pi\left(6.37 \times 10^{3} \mathrm{~km}\right)^{2}=5.10 \times 10^{8} \mathrm{~km}^{2}
$$

c) Volume in cubic kilometers?

$$
\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi\left(6.37 \times 10^{3} \mathrm{~km}\right)^{3}=1.08 \times 10^{12} \mathrm{~km}^{3}
$$

7. Antarctica is roughly semicircular, with radius $\sim 2000 \mathrm{~km}$, and is 3000 meters thick what is its volume in cm^{3} ?

We assume Antarctica is a half-cylindrical slab of ice, as seen from above in the sketch. $R=2000 \mathrm{~km}=2 \times 10^{8} \mathrm{~cm}$ and $t=3000 \mathrm{~m}=3 \times 10^{5} \mathrm{~cm}$. The volume is then:

$$
V=\frac{1}{2}\left(\pi R^{2} t\right)=\frac{1}{2}\left(\pi\left(2 \times 10^{8} \mathrm{~cm}\right)^{2} \cdot 3 \times 10^{5} \mathrm{~cm}\right)=1.3 \times 10^{25} \mathrm{~cm}^{3}
$$

9. When 2.0 inches of rain falls on a $26 \mathrm{~km}^{2}$ area, how many acre-feet of water?

First, realize that 2.0 inches on $26 \mathrm{~km}^{2}$ is the same volume as 12 inches on $26 / 6 \mathrm{~km}^{2}$ ($=12$ inches on $4.3 \mathrm{~km}^{2}$). So how many acres is $4.3 \mathrm{~km}^{2}$?

$$
4.33 \mathrm{~km}^{2} \cdot\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)^{2} \cdot \frac{2.471 \text { acre }}{10^{4} \mathrm{~m}^{2}}=1.1 \times 10^{3} \text { acre }
$$

So we have 1.1×10^{3} acre-feet of water.
11. How many microseconds in a fortnight?

$$
2.0 \text { week } \cdot \frac{7 \text { day }}{\text { week }} \cdot \frac{24 \text { hour }}{\text { day }} \cdot \frac{60 \mathrm{~min}}{\text { hour }} \cdot \frac{60 \mathrm{~s}}{\mathrm{~min}} \cdot \frac{10^{6} \mu \mathrm{~s}}{1 \mathrm{~s}}=1.2 \times 10^{12} \mu \mathrm{~s}
$$

12. a) How long is a microcentury in minutes?

$$
1 \mu \text { century } \cdot \frac{1 \text { century }}{10^{6} \mu \text { century }} \cdot \frac{100 \mathrm{yr}}{1 \text { century }} \cdot \frac{365.4 \text { days }}{\mathrm{yr}} \cdot \frac{24 \text { hour }}{\text { day }} \cdot \frac{60 \mathrm{~min}}{\text { hour }}=52.6 \mathrm{~min}
$$

b) What is the percentage difference between 50 min and a microcentury?

$$
\% \text { difference }=\frac{(\text { actual }- \text { approximate })}{\text { actual }} \times 100=\frac{52.6 \mathrm{~min}-50 \mathrm{~min}}{52.6 \mathrm{~min}} \times 100=4.9 \%
$$

14. The period of the pulsar is 1.5578×10^{-3} seconds.
a) How many rotations per week?

$$
\frac{7.00 \text { days }}{\text { week }} \cdot \frac{24 \text { hours }}{\text { day }} \cdot \frac{3600 \text { seconds }}{\text { hour }} \cdot \frac{1 \text { rotation }}{1.5578 \times 10^{-3} \text { seconds }}=3.88 \times 10^{8} \frac{\text { rotions }}{\text { week }}
$$

b) How long does it take the pulsar to rotate 1 million times?

$$
1 \times 10^{6} \text { rotations } \cdot \frac{1.5578 \times 10^{-3} \text { seconds }}{1 \text { rotation }}=1557.8 \text { seconds }
$$

c) What is the associated uncertainty? The uncertainty is $\pm 3 \times 10^{-14} \mathrm{~ms}$ per rotation. The total uncertainty in 1×10^{6} rotations is $1 \times 10^{6} \cdot 3 \times 10^{-14} \mathrm{~ms}=3 \times 10^{-11} \mathrm{~s}$. So the associated uncertainty is ± 30 picoseconds.
16. How many degrees longitude in a time zone? The Earth has 360° longitude and rotates roughly once every 24 hours. If each time zone is 1 hour apart, we have 24 time zones and $360^{\circ} / 24=15^{\circ}$ per time zone.
23. The mass of the earth is $5.98 \times 10^{24} \mathrm{~kg}$. If the Earth is made up of atoms with average mass 40 u , how many atoms are in the Earth?

$$
5.98 \times 10^{24} \mathrm{~kg} \cdot \frac{1 \mathrm{u}}{1.661 \times 10^{-27} \mathrm{~kg}} \cdot \frac{1 \text { atom }}{40 \mathrm{u}}=9.0 \times 10^{49} \text { atoms }
$$

49. How many habanero's needed to replace the jalapeños? We know we need 2 jalapeños per person, we have 400 people in the party, and that a jalapeño is 4000 SHU , and a habanero is 3×10^{5} SHU. So:

$$
\frac{400 \text { people }}{\text { party }} \cdot \frac{2 \text { jalapeños }}{\text { person }} \cdot \frac{4000 \mathrm{SHU}}{\text { jalapeños }} \cdot \frac{1 \text { habanero }}{3 \times 10^{5} \mathrm{SHU}}=10.7 \frac{\text { habanero }}{\text { party }}
$$

Probably easier to just use 11 habaneros and heat things up a tiny bit. Though my wife, who grew up in Texas, says just to use 800 habaneros...

