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Key issues in forecast combination

Why combine?
Many models or forecasts with ‘similar’predictive accuracy

Diffi cult to identify a single best forecast
State-dependent performance

Diversification gains

When to combine?
Individual forecasts are misspecified
Unstable forecasting environment (past track record unreliable)
Short track record; use 1-over-N weights?

What to combine?
Forecasts using different information sets
Forecasts based on different modeling approaches (linear/nonlinear)
Surveys, econometric model forecasts
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Essentials of forecast combination

Dimensionality reduction: Combination reduces the information in a vector
of forecasts to a single summary measure using a set of combination weights

Optimal combination chooses weights to minimize the expected loss of the
combined forecast

More accurate forecasts tend to get larger weights
Combination weights also reflect correlations across forecasts
Estimation error is important to combination weights

Irrelevance Proposition: In a world with no model misspecification, infinite
data samples (no estimation error) and complete access to the information
sets underlying the individual forecasts, there is no need for forecast
combination.
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When to combine?

Combined forecast f (f̂1, f̂2) dominates individual forecasts f̂1 and f̂2 if

E
[
L(f̂i , yT+h)

]
> min

f (.)
E
[
L(f (f̂1, f̂2), yT+h)

]
, for i = 1, 2

L : loss function, e.g., MSE loss (y − f )2

yT+h : outcome h periods ahead
h : forecast horizon
Forecast combination is essentially a model selection and parameter
estimation problem with special constraints on the estimation problem
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Applications of forecast combinations

Forecast combinations have been successfully applied in several areas of
forecasting:

Gross National Product
currency market volatility and exchange rates
inflation, interest rates, money supply
stock returns
meteorological data
city populations
outcomes of football games
wilderness area use
check volume
political risks

Estimation of GDP

Averaging across values of unknown parameters
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Two types of forecast combinations

1 Data underlying the forecasts are not observed:

Treat individual forecasts like any other conditioning information (data) and
estimate the best possible mapping from the forecasts to the outcome

2 Data underlying the model forecasts is observed: ‘model combination’

Using a middle step of first constructing forecasts limits the flexibility of the
final forecasting model. Why not directly map the underlying data to the
forecasts?

Estimation error plays a key role in the risk of any given method. Model
combination yields a risk function which, through parsimonious use of the
data, could result in an attractive risk function
Combined forecast can be viewed simply as a different estimator of the final
model
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Combinations of forecasts: theory

Restrict conditioning information to a set of m forecasts
zt = {f̂1t+h|t , ...., f̂mt+h|t}
The optimal combination is the function of the forecasts
f (f̂1t+h|t , f̂2t+h|t , ..., f̂mt+h|t ) that solves

min
f (.)

E
[
L(f (f̂1t+h|t , f̂2t+h|t , ..., f̂mt+h|t ), yt+h)|Zt

]

Optimality of the combined forecast is conditional on observing the forecasts
{f̂1t+h|t , f̂2t+h|t , ..., f̂mt+h|t} rather than the underlying information sets used
to construct the forecasts

If the model f (.) is a linear index, the combination is a linear combination
with weights ω1, ...,ωm
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Combinations of forecasts: theory

Specialized concepts in optimal forecast combination arise from additional
restrictions placed on the search for combination models

Because the underlying ‘data’are forecasts, they can be expected to obtain
non-negative weights that sum to unity,

0 ≤ ωi ≤ 1, i = 1, ...,m

Such constraints can be used to reduce the relevant parameter space for the
combination weights and offer a more attractive risk function

No need to constrain zt to include only the set of observed forecasts
{f̂1t+h|t , ...., f̂mt+h|t}. This information could be augmented to include other
observed variables, zt :

min
f (.)

E
[
L(f (f̂1t+h|t , f̂2t+h|t , ..., f̂mt+h|t , zt ), yt+h)

]
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Combinations of two forecasts

Two individual forecasts f1, f2 with forecast errors e1 = y − f1, e2 = y − f2
Both forecasts assumed to be unbiased: E [ei ] = 0

Variances of forecast errors: σ2i , i = 1, 2. Covariance is σ12

Combined forecasts will also be unbiased if the weights add up to one:

f = ωf1 + (1−ω)f2

Combined forecast error is a weighted average of the individual forecast
errors:

e(ω) = y −ωf1 − (1−ω)f2 = ωe1 + (1−ω)e2
E [e(ω)] = 0

Var(e(ω)) = ω2σ21 + (1−ω)2σ22 + 2ω(1−ω)σ12
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Combinations of two forecasts: optimal weights

Solving for the MSE-optimal combination weights,

ω∗ =
σ22 − σ12

σ21 + σ22 − 2σ12

1−ω∗ =
σ21 − σ12

σ21 + σ22 − 2σ12

Combination weight can be negative if σ12 > σ21 or σ12 > σ22
Negative weight on a forecast does not mean that it has no value - it means
the forecast can be used to offset the prediction errors of other models

Weakly correlated forecast errors: weights are the relative variance σ22/σ21 of
the forecasts:

ω∗ =
σ22

σ21 + σ22
=

σ22/σ21
1+ σ22/σ21

Greater weight is assigned to more precise models (small σ2i )
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Combinations of multiple unbiased forecasts

e = ιmy − f : vector of forecast errors;

E [e] = 0, Σe = E [ee ′]

Minimizing MSE:

ω∗ = argmin
ω

ω′Σeω,

s.t. ω′ιm = 1

Optimal combination weights:

ω∗ = (ι′mΣ−1e ιm)
−1Σ−1e ιm ,

MSE (ω∗) = ω∗′Σeω∗ = (ι′mΣ−1e ιm)
−1
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Optimality of equal weights

Equal weights (EW) play a special role in forecast combination

EW are optimal in population when the individual forecast errors have
identical variance, σ2, and identical pair-wise correlations ρ

Σ−1e ιm =
ιm

σ2(1+ (m− 1)ρ)

(ι′mΣ−1e ιm)
−1 =

σ2(1+ (m− 1)ρ)
m

This situation holds to a close approximation when all models are based on
similar data and perform roughly the same

More generally, EW are the optimal combination weights when the unit
vector lies in the eigen space of Σe .

Both a suffi cient and a necessary condition for equal weights to be optimal

Timmermann (UCSD) Combinations July 29 - August 2, 2013 12 / 50



Estimating combination weights

In practice, combination weights need to be estimated using past data

Once we use estimated parameters, the population-optimal weights no longer
have any optimality properties in a ‘risk’sense
For any forecast combination problem, there is typically no single optimal
forecast method with estimated parameters
Risk functions for different estimation methods will typically depend on the
data generating process

we prefer one method for some processes and different methods for other data
generating processes

Timmermann (UCSD) Combinations July 29 - August 2, 2013 13 / 50



Estimating combination weights

Treating the forecasts as data means that all issues related to how to
estimate forecast models from data are relevant

In the case of forecast combination, the “data” is not the outcome of a
random draw but can be regarded as unbiased (if not precise) forecasts of the
outcome

This suggests imposing special restrictions on the combination schemes

Under MSE loss, linear combination schemes might impose

∑
i

ωi = 1, ωi ∈ [0, 1]

Simple combination schemes such as EW satisfy these constraints and do not
require estimation of any parameters

EW can be viewed as a reasonable prior when no data has been observed
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Estimating combination weights

Existence of many estimation methods boils down to a number of standard issues
in constructing forecasts:

role of estimation error

lack of a single optimal estimation scheme

simple methods are diffi cult to beat in practice

common baseline is to use a simple EW average of forecasts:

f ewt+h|t =
1
m

m

∑
i=1

fi ,t+h|t

no estimation error here since the combination weights are imposed rather
than estimated
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Simple combination methods

Equal-weighted forecast

f ewt+h|t =
1
m

m

∑
i=1

fi ,t+h|t

Median forecast
f mediant+h|t = median{fi ,t+h|t}mi=1

Trimmed mean. Order forecasts {f1,t+h|t ≤ f2,t+h|t ≤ ...
≤ fm−1,t+h|t ≤ fm,t+h|t}. Trim top/bottom λ%

f trimt+h|t =
1

m(1− 2λ)

b(1−λ)mc
∑

i=bλm+1c
fi ,t+h|t
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Bates-Granger restricted least squares

Bates and Granger (1969): use plug-in weights in the optimal solution based
on the estimated variance-covariance matrix

This is numerically identical to restricted least squares estimator of the
weights from a regression of the outcome on the vector of forecasts ft+h|t
and no intercept subject to the restriction that the coeffi cients sum to one:

f BGt+h|t = ω̂′OLS ft+h|t = (ι
′Σ̂−1e ι)−1 ι′Σ̂−1e ft+h|t

Σ̂ε = (T − h)−1 ∑T−ht=1 et+h|te
′
t+h|t : sample estimator of error covariance

matrix
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Diebold and Pauly (1987) shrinkage estimator

Forecast combination weights formed as a weighted average of the prior
ωp = ιm/m and the least squares estimates ω̂OLS :

ω̂B = Ãω̂OLS +m
−1(I − Ã)ιm

Empirical Bayes approach sets Ã = I (1− σ̂2/τ̂2)

σ̂2 : MLE for variance of the residuals from the OLS combination regression

τ̂2 = (ω̂ols −ωp)′(ω̂ols −ωp)/tr [(Z ′f Zf )]
−1

Zf : matrix of regressors (ignoring the constant)
Z ′f Zf is an unscaled estimate of the variance-covariance matrix of the
forecasts
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Weights inversely proportional to MSE or rankings

Ignore correlations across forecast errors and set weights proportional to the
inverse of the models’MSE-values:

ωi =
MSE−1i

∑mi=1MSE
−1
i

Aiolfi and Timmermann (2006) propose a robust weighting scheme that
weights forecast models inversely to their rank, Rankit+h|t

ω̂it+h|t =
Rank−1it+h|t

∑mi=1 Rank
−1
it+h|t

Best model gets a rank of 1, second best model a rank of 2, etc.
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Forecast combination puzzle

Empirical studies often find that simple equal-weighted forecast combinations
perform very well compared with more sophisticated combination schemes
that rely on estimated combination weights

Smith and Wallis (2009): “Why is it that, in comparisons of combinations of
point forecasts based on mean-squared forecast errors ..., a simple average
with equal weights, often outperforms more complicated weighting schemes.”

Errors introduced by estimation of the combination weights could overwhelm
any gains from setting the weights to their optimal values over using equal
weights

Explanations of the puzzle based on estimation error must show that

estimation error is large and/or
gains from setting the combination weights to their optimal values are small
relative to using equal weights
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Forecast combination puzzle - is it estimation error?

In suffi ciently large samples OLS estimation error should be of the order
(m− 1)/T

Unless equal weights are close to being optimal, estimation error is unlikely to
be the full story, at least when m/T is small

If poor forecasting methods get weeded out, most forecasts in any
combination have similar forecast error variances, leading to a nearly constant
diagonal of Σe

Differences across correlations would be required to cause deviations from EW
Large unpredictable component outside all of the forecasts pushes correlations
towards positive numbers

Explanations that aim to solve the forecast combination puzzle by means of
large estimation errors require model misspecification or more complicated
DGPs than is assumed when estimating the combination weights
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Rapach-Strauss-Zhou (RFS, 2010)

Quarterly data, 1947-2005

15 variables from Goyal and Welch (2008)

Individual univariate prediction models:

rt+1 = αi + βi xit + εit+1

r̂t+1|t ,i = α̂t ,i + β̂t ,i xit

Forecast combination:

r̂ ct+1|t =
N

∑
i=1

ωt ,i r̂t+1|t ,i
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Combination weights (Rapach et al.)

r̂ ct+1|t =
N

∑
i=1

ωt ,i r̂t+1|t ,i

ωt ,i = 1/N

ωt ,i =
DMSPE−1t ,i

∑Nj=1 DMSPE
−1
t ,j

DMSPEt ,i =
t

∑
s=T0

θτ−1−s (rs+1 − r̂s+1,i )2

DMSPE is the discounted mean squared prediction error, using a discount
factor, θ ≤ 1
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Rapach-Strauss-Zhou (RFS, 2010): results
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Rapach-Strauss-Zhou (RFS, 2010): results
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Empirical Results (Rapach, Strauss and Zhou, 2010)
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Rapach, Strauss, Zhou: main results

Forecast combination methods dominate individual prediction models for
stock returns out-of-sample

Forecast combination reduces forecast variance

Combined return forecasts are closely related to the economic cycle (NBER
indicator)

"Our evidence suggests that the usefulness of forecast combining methods
ultimately stems from the highly uncertain, complex, and constantly evolving
data-generating process underlying expected equity returns, which are related
to a similar process in the real economy."
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Elliott, Gargano, and Timmermann (JoE, forthcoming):

Generalizes combination of m univariate models

ft+1|t =
1
m

m

∑
i=1

xt β̂i

to consider all nk ,K k−variate models (out of a total of K possible predictors)
For fixed K , the estimator for the complete subset regression, β̂k ,K , can be
written as

β̂k ,K = Λk ,K β̂OLS + op(1)

Λk ,K ≡ 1
nk ,K

nk ,K

∑
i=1

(
S ′i ΣX Si

)−
(S ′i ΣX ).

Si : K ×K matrix with zeros everywhere except for ones in the diagonal cells
corresponding to included variables, zeros for the excluded variables
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Elliott, Gargano, and Timmermann (JoE, forthcoming)
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Elliott, Gargano, and Timmermann (JoE, forthcoming)
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Adaptive combination weights

Bates and Granger (1969) propose several adaptive estimation schemes

Rolling window of the forecast models’relative performance over the most
recent win observations:

ω̂i ,t |t−h =

(
∑tτ=t−win+1 e

2
i ,τ|τ−h

)−1
∑mj=1

(
∑tτ=t−win+1 e

2
j ,τ|τ−h

)−1
Adaptive updating scheme discounts older performance, λ ∈ (0; 1) :

ω̂i ,t |t−h = λω̂i ,t−1|t−h−1 + (1− λ)

(
∑tτ=t−win+1 e

2
i ,τ|τ−h

)−1
∑mj=1

(
∑tτ=t−win+1 e

2
j ,τ|τ−h

)−1
The closer to unity is λ, the smoother the combination weights
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Time-varying combination weights

Time-varying parameter (Kalman filter):

yt+1 = ω′t f̂t+1|t + εt+1

ωt = ωt−1 + ut , cov(ut , εt+1) = 0

Discrete (observed) state switching (Deutsch et al., 1994):

yt+1 = Iet∈A(ω01 +ω′1 f̂t+1|t ) + (1− Iet∈A)(ω02 +ω′2 f̂t+1|t ) + εt+1

Regime switching weights (Elliott and Timmermann, 2005):

yt+1 = ω0st+1 +ω′st+1 f̂t+1|t + εt+1

pr(St+1 = st+1 |St = st ) = pst+1st
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Combinations as a hedge against instability

Forecast combinations can work well empirically because they provide
insurance against model instability

Empirically, Elliott and Timmermann (2005) allow for regime switching in
combinations of forecasts from surveys and time-series models and find strong
evidence that the relative performance of the underlying forecasts changes
over time
Performance of combined forecasts tends to be more stable than that of
individual forecasts used in the empirical combination study of Stock and
Watson (2004)
Combination methods that attempt to explicitly model time-variations in the
combination weights often fail to perform well, suggesting that regime
switching or model ‘breakdown’can be diffi cult to predict or even to track
through time
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Model combination

When the data underlying the individual forecasts is observed, we can
construct forecasts from many different models and average over the
resulting forecasts

For linear combinations, the model average forecast is

f ct+h|t =
m

∑
i=1

ωi fit+h|t

fit+h|t : individual forecast that depends on some underlying data, zt
Same issues as when only the forecasts are observed - but new possibilities
like BMA (Bayesian Model Averaging) arise
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Classical approach to density combination

Problem: we do not directly observe the outcome density−we only observe a
draw from this−and so cannot directly choose the weights to minimize the
loss between this object and the combined density

Kullback Leibler (KL) loss for a linear combination of densities ∑mi=1 ωipit (y)
relative to some unknown true density p(y) is given by

KL =
∫
p(y) ln

(
p(y)

∑mi=1 ωipi (y)

)
dy

=
∫
p(y) ln (p(y)) dy −

∫
p(y) ln

(
m

∑
i=1

ωipi (y)

)
dy

= C − E ln
(
m

∑
i=1

ωipi (y)

)

C is constant for all choices of the weights ωi

Minimizing the KL distance is the same as maximizing the log score in
expectation
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Classical approach to density combination

Use of the log score to evaluate the density combination is popular in the
literature

Geweke and Amisano (2011) use this approach to combine GARCH and
stochastic volatility models for predicting the density of daily stock returns

Under the log score criterion, estimation of the combination weights becomes
equivalent to maximizing the log likelihood. Given a sequence of observed
outcomes {yt}Tt=1, the sample analog is to maximize

ω̂ = argmax
ω
T−1

T

∑
t=1

ln

(
m

∑
i=1

ωipit (yt )

)

s.t. ωi ≥ 0,
m

∑
i=1

ωi = 1 for all i
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Prediction pools with two models (Geweke-Amisano, 2011)

With two models, M1,M2, we have a predictive density

p(yt |Yt−1,M) = ωp(yt |Yt−1,M1) + (1−ω)p(yt |Yt−1,M2)

and a predictive log score

T

∑
t=1

log [wp(yt |Yt−1,M1) + (1− w)p(yt |Yt−1,M2)] , ω ∈ [0, 1]

Empirical example: Combine GARCH and stochastic volatility models for
predicting the density of daily stock returns
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Log predictive score as a function of model weight,
S&P500, 1976-2005 (Geweke-Amisano, 2011)
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Weights in pools of multiple models, S&P500, 1976-2005
(Geweke-Amisano, 2011)
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Bayesian Model Averaging (BMA)

pc (y) =
m

∑
i=1

ωip(y |Mi )

m models: M1, ....,Mm
BMA weights predictive densities by the posteriors of the models, Mi
BMA is a model averaging procedure rather than a predictive density
combination procedure per se

BMA assumes the availability of both the data underlying each of the
densities, pi (y) = p(y |Mi ), and knowledge of how that data is employed to
obtain a predictive density

p(Mi ) : prior probability that model i is the true model
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Bayesian Model Averaging (BMA)

Posterior probability for model i , given the data, Z , is

p(Mi |Z ) =
p(Z |Mi )p(Mi )

∑mj=1 p(Z |Mj )p(Mj )

The combined model average is then

pc (y) =
m

∑
i=1

p(y |Mi )p(Mi |Z )

Marginal likelihood of model i is

P(Z |Mi ) =
∫
P(Z |θi ,Mi )P(θi |Mi )dθi

p(θi |Mi ) : prior density of model i’s parameters
p(Z |θi ,Mi ) : likelihood of the data given the parameters and the model
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Constructing BMA estimates

Requirements:

List of models M1, ...,Mm
Computation of p(Mi |Z ) requires computation of the marginal likelihood
p(Z |Mi ) which can be time consuming
Prior model probabilities p(M1), ...., p(Mm)

Priors for the model parameters P(θ1 |M1), ...,P(θm |Mm)
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Alternative BMA schemes

Raftery, Madigan and Hoeting (1997) MC3

If the models’marginal likelihoods are diffi cult to compute, one can use a
simple approximation based on BIC:

ωi = P(Mi |Z ) ≈
exp(−0.5BICi )

∑mi=1 exp(−0.5BICi )

Remove models that appear not to be very good

Madigan and Raftery (1994) suggest removing models for which p(Mi |Z ) is
much smaller than the posterior probability of the best model
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Avramov (JFE, 2002)

m = 14 different predictors

214 = models

monthly and quarterly stock returns, 1953-1998

six Fama-French portfolios: size (S,B)×(LMH) book to market
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Avramov (JFE, 2002): Results

Timmermann (UCSD) Combinations July 29 - August 2, 2013 45 / 50



Avramov (JFE, 2002): Results
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Avramov (JFE, 2002): Results
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Avramov (JFE, 2002): Results
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Avramov (JFE, 2002): main results

BMA forecasts are more robust than individual forecasts, with unbiased and
serially uncorrelated forecast errors

Model uncertainty reduces the strength of the evidence on return
predictability

term and market risk premia appear to be the best predictors of stock returns
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Conclusion

Combinations of forecasts is motivated by

misspecified forecasting models due to, e.g., structural breaks
diversification across forecasts
private information used to compute individual forecasts (surveys)

Simple, robust estimation schemes tend to work well

small samples (estimation errors in combination weights)

Even if they do not always deliver the most precise forecasts, forecast
combinations, particularly equal-weighted ones, generally do not deliver poor
performance and so from a “risk”perspective represent a relatively safe
choice

Empirically, survey forecasts work well for many macroeconomic variables,
but they tend to be biased and not very precise for stock returns
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