LONGITUDINAL MEASUREMENT INVARIANCE FOR A MARITAL SATISFACTION INSTRUMENT: WHICH IS UNSTABLE: THE CONSTRUCT OR THE INSTRUMENT?

Antonio Olmos*, Susan Hutchinson^{#,} Scott Stanley*, Galena Rhoades*

American Evaluation Association Conference Minneapolis, MN. October 2012 * University of Denver# University of Northern Colorado

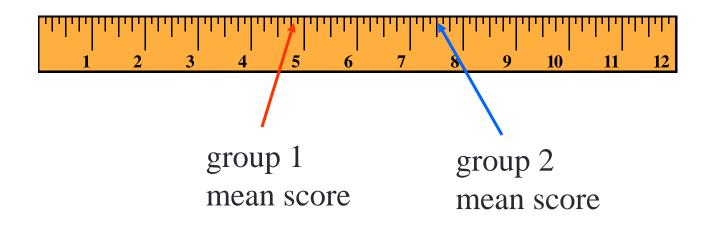
Part of this research was supported by National Institute of Mental Health (NIMH), Division of Services and Intervention Research, Adult and Geriatric Treatment and Prevention Branch Grant 5-RO1-MH35525-12, "The Long-Term Effects of Premarital Intervention."

It started with some strange reliabilities...

- Reliabilities in the early waves were abysmal (0.4)
- But as we collected more data over time, a funny thing happened:
 - Reliabilities started to improve
 - From follow-up wave 3 and on, reliabilities were 0.7

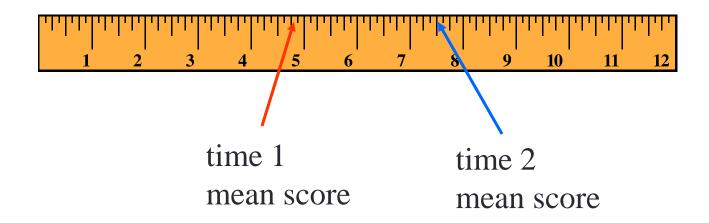
This pattern of increasing reliability over time raised the question:

Was the Locke-Wallace Relationship Adjustment Test measuring the same marital satisfaction trait across time?


And if not what were the implications for examining change in marital satisfaction levels?

Further, do we really need to concerned given that the Locke-Wallace has been "well-established"?

Concept of Measurement Invariance


- The same measurement model (e.g., factor model, IRT model, etc.) holds across different populations or time periods
- Items mean the same thing to all respondents
- Participants understand and use measurement scales or response options in the same way, e.g.,
 - An option of "rarely" represents the same quantity for all respondents

Measurement invariance - cont'd


When a measure produces equivalent scores it is analogous to placing scores along the same linear continuum, allowing meaningful comparisons between groups or ...

Measurement invariance - cont'd

When a measure produces equivalent scores it is analogous to placing scores along the same linear continuum, allowing meaningful comparisons between groups or **across time**

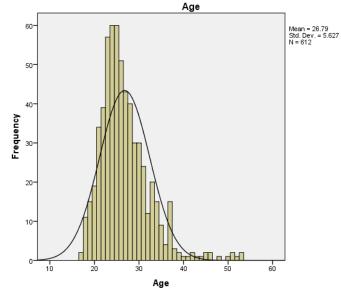
Measurement non-invariance illustrated

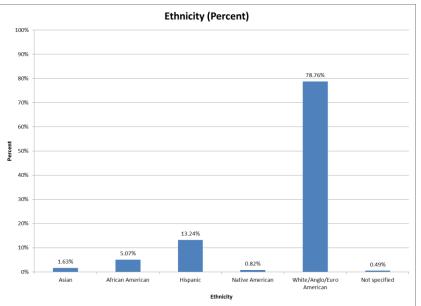
Why is longitudinal measurement invariance important?

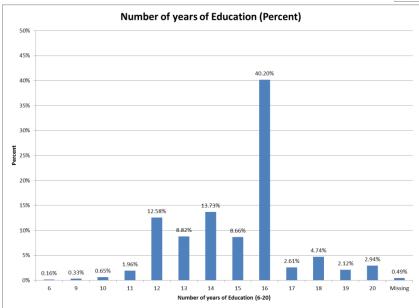
- Measurement invariance is a <u>validity</u> issue.
- Without evidence of equivalent measurement, scores across time cannot be considered equally valid, i.e.,
 - The absence of equivalence compromises score interpretation for at least some participants across the waves of data collection
- Without evidence of equivalence, tests of mean differences cannot be unambiguously interpreted
 - Cannot know if apparent mean differences reflect change in level of the trait, change in nature of the trait, or merely a measurement artifact

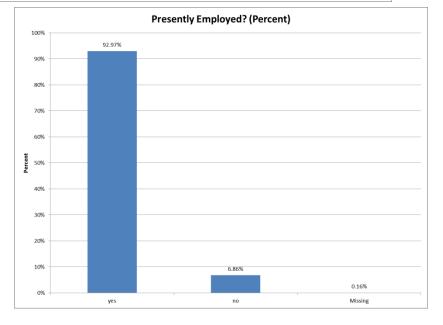
Longitudinal invariance illustrated using the Locke-Wallace

- Study designed to identify a non-convenience community sample representative of the couples marrying in religious organizations (ROs) in Denver.
- Sample of 105 large ROs,
 - Invited couples seeking marriage at their organization to participate in the study (for details, see Stanley et al., 2001).
 - 306 couples from recruited ROs participated in 3 conditions

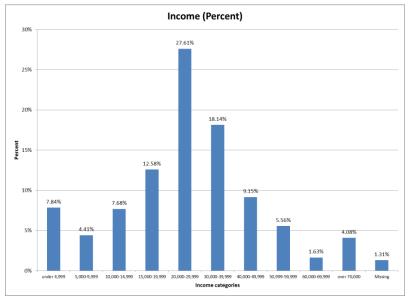

Locke Wallace

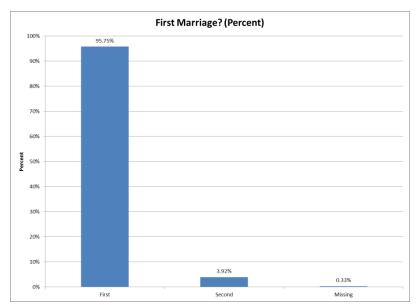

- Developed in 1959
- 16 items purported to be unidimensional
- "Strange" item weighting to maximize discriminative power

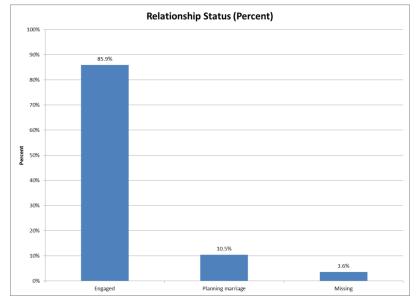

Sample items

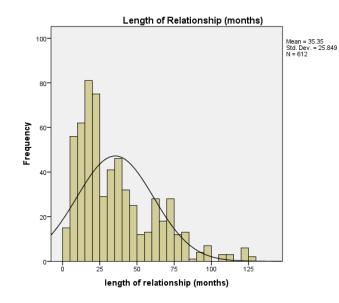

- Handling family finances
- Matters of recreation
- Affection
- Do you ever wish you had not married
- In leisure time do you prefer to....
- Global happiness item

Demographics

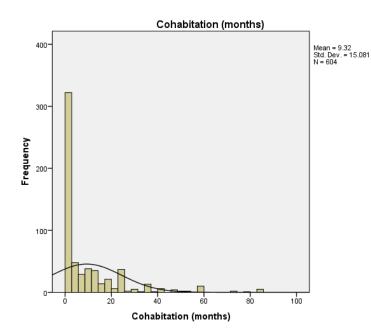


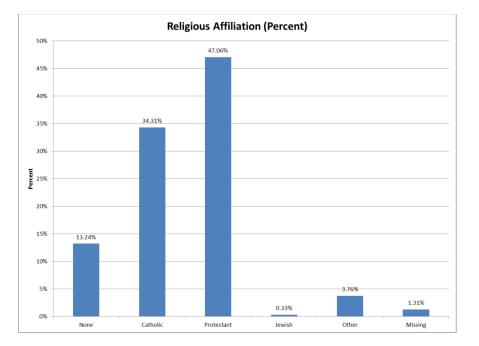


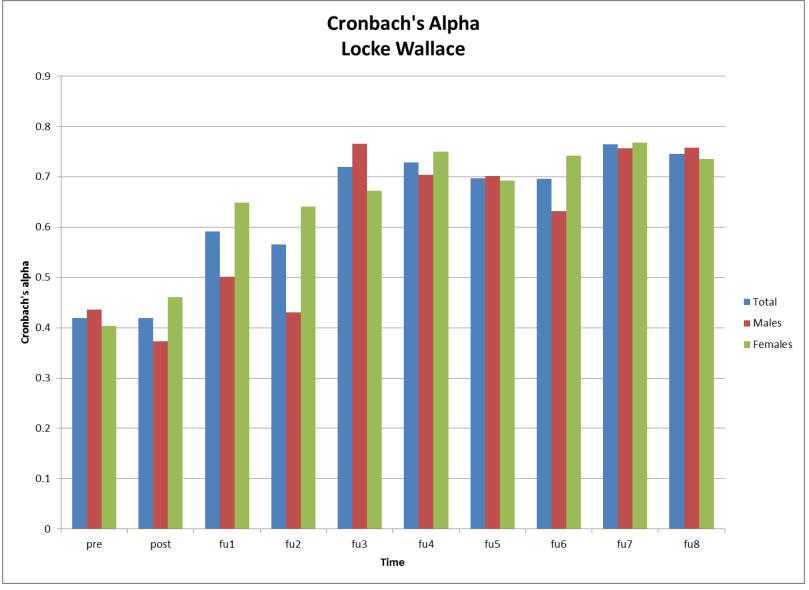




Demographics (cont'd)







Demographics (cont'd)

Cronbach's alpha over time

Rank-Order Correlations (total score)

Males and Females

					a. Listwise	e N = 44				
	PRE	POST	FU1	FU2	FU3	FU4	FU5	FU6	FU7	FU8
PRE										
POST	.480									
FU1	.477	.621								
FU2	.061	.145	.393							
FU3	.108	.324	.502	.509						
FU4	.242	.333	.406	.471	.794					
FU5	.265	.298	.515	.488	.710	.741				
FU6	.325	.316	.412	.301	.571	.693	.596			
FU7	.290	.247	.403	.422	.595	.667	.634	.514		
FU8	.384	.404	.477	.289	.449	.562	.627	.652	.694	
				Pairwise						
	PRE	POST	FU1	FU2	FU3	FU4	FU5	FU6	FU7	FU8
PRE										
POST	0.524									
FU1	0.473	0.525								
FU2	0.297	0.367	0.477							
FU3	0.201	0.414	0.433	0.551						
FU4	0.268	0.375	0.489	0.547	0.636					
FU5	0.292	0.395	0.511	0.523	0.589	0.716				
FU6	0.35	0.363	0.454	0.484	0.495	0.705	0.641			
FU7	0.392	0.402	0.457	0.452	0.47	0.666	0.692	0.628		
FU8	0.308	0.329	0.431	0.406	0.401	0.619	0.646	0.61	0.671	

Rank-order correlations (total score) by Gender Males

	a. gender	= male		b. Listwise	e N = 25							a. gender	= female		b. Listwise	e N = 19					
	PRE	POST	FU1	FU2	FU3	FU4	FU5	FU6	FU7	FU8		PRE	POST	FU1	FU2	FU3	FU4	FU5	FU6	FU7	FU8
PRE											PRE				102						
POST	.456										POST	.443									i
FU1	.300	.477									FU1	.737	.761								i
FU2	172	033	.366								FU2	.374	.338	.376							i
FU3	069	.076	.426	.483							FU3	.269	.644	.539	.511						i
FU4	.181	.207	.444	.494	.810						FU4	.275	.437	.234	.364	.690					i
FU5	.166	.230	.476	.392	.755	.810					FU5	.458	.296	.443	.611	.527	.516				i
FU6	.272	.162	.378	.163	.436	.606	.542				FU6	.281	.530	.408	.451	.706	.764	.633			i
FU7	.282	.207	.586	.266	.612	.664	.562	.385			FU7	.186	.163	.062	.653	.473	.639	.692	.602		i
FU8	.377	.455	.636	.138	.444	.604	.563	.662	.666		FU8	.304	.174	.155	.524	.419	.422	.738	.574	.751	i
				pairwise											pairwise						
	PRE	POST	FU1	FU2	FU3	FU4	FU5	FU6	FU7	FU8		PRE	POST	FU1	FU2	FU3	FU4	FU5	FU6	FU7	FU8
PRE											PRE										
POST	0.555										POST	0.49									
FU1	0.368	0.483									FU1	0.575	0.559								
FU2	.128	0.318	0.438								FU2	0.459	0.417	0.527							
FU3	.113	0.424	0.459	0.647							FU3	0.29	0.412	0.38	0.456						
FU4	0.25	0.299	0.562	0.608	0.721						FU4	0.286	0.459	0.402	0.485	0.528					
FU5	.183	0.371	0.568	0.469	0.609	0.739					FU5	0.405	0.43	0.457	0.583	0.557	0.699				
FU6	0.305	0.352	0.471	0.468	0.487	0.721	0.646				FU6	0.395	0.377	0.454	0.525	0.513	0.686	0.634			
FU7	0.348	0.408	0.532	0.395	0.541	0.692	0.682	0.596			FU7	0.425	0.421	0.397	0.489	0.386	0.635	0.683	0.64		
FU8	0.363	0.33	0.542	0.435	0.562	0.632	0.627	0.637	0.692		FU8	0.279	0.356	0.326	0.359	0.216	0.605	0.662	0.583	0.647	

DIF Fit Summary

SUMMARY DIF BETWEEN-CLASS ITEM PERSON PROB. MEAN-SQUARE t=ZSTD Number Name CLASSES CHI-SQUARE D.F. 10 20.5474 .0148 .3081 -1.9088 1 LW 1A 2.4038 9 .9833 .0382 -4.0632 2 LW_2A 109 .3369 .1350 -2.9423 10 10.1687 3 LW_3A 9 .0002 .4706 -1.2567 10 31.4540 4 LW_4A 10 5.4888 9 .7898 .1007 -3.2460 5 LW_5A 9 .0000 9 .8278 74.5702 10 1.1536 .4675 6 LW_6A .0741 -3.5339 10 5.0737 7 LW_7A 19.7648 9 .0194 .2923 -1.9834 10 8 LW_8A 9 .8158 9 .8152 5.2081 .0702 -3.5810 10 9 LW_9A 10 5.2147 .0514 -3.8413 10 LW_10A 9 .0000 9 .3855 .7517 -.4204 .1222 -3.0490 53.2598 10 11 LW_11A 10 9.5801 12 LW_14A 10 2.3132 9 .9855 .0545 -3.7942 13 LW_15A 7.0296 .6340 .0936 -3.3176 10 14 LW_16A 9 .5178 -1.0963 1036.7132 .0000 15 LWLEI PERSON SUMMARY DIF BETWEEN-CLASS ITEM PROB. MEAN-SQUARE t=ZSTD Number Name CLASSES CHI-SOUARE D.F. .4500 -1.3300 29.6951 .0005 10 1 LW_1A 4.8383 9 .8482 .0472 -3.9073 10 2 LW_2A 20.6505 9 .0143 .3515 -1.7155 103 LW_3A 9 9 45.6318 .0000 .6937 -.5731 4 LW_4A 10 10 10.2532 .3303 .1466 -2.8511 5 LW_5A .9261 -.0037 54.5388 9 .0000 10 6 LW_6A 9 .9508 .0345 -4.1343 10 3.3088 7 LW_7A 9 .6058 9 .7067 9 .2922 10 7.3006 .0850 -3.4090 8 LW_8A 6.3276 10 .0754 -3.5177 9 LW_9A .1424 -2.8832 10.7635 10 LW_10A 109.0000 10 38.1664 .5420 -1.0180 11 LW_11A 9 .7866 9 .0818 .0650 -3.6474 10 5.5224 12 LW_14A 15.3456 10.2120 -2.4123 13 LW_15A 9 9 .1134 -3.1260 .6683 -.6428 10 7.6822 .5664 14 LW_16A 10 .0000 46.9066 15 LWLEI

Males

Females

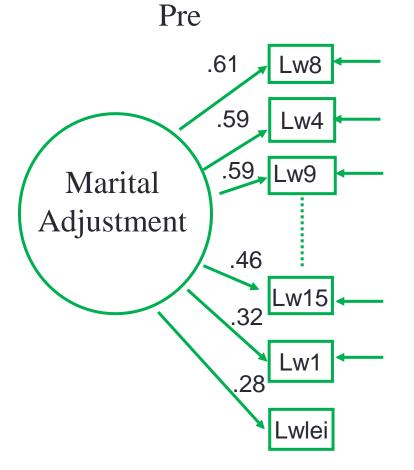
Items with Differential functioning across waves (pairwise comparisons)

						FEMA	LES			
	PRE	POST	FU1	FU2	FU3	FU4	FU5	FU6	FU7	FU8
PRE				6	4,6	6,11	4,6, 11,L	4,6	1,4, 6	4,6
POST						11,L	11,L	L		
FU1										
FU2 FU3										
FU4										
FU5	3									
FU6 FU7	3 3 3									
FU8	3									
						MALE	C			
	PRE	POST	FU1	FU2	FU3	MALE FU4		FU6	FU7	FU8
	PRE	POST	FU1	FU2	FU3	FU4	S FU5	FU6	FU7	FU8
PRE	PRE	POST	FU1	FU2	FU3 4,6,1 1		FU5 4,6, L	FU6 6,11	FU7 6,11	
	PRE	POST	FU1	FU2	4,6,1 1	FU4 4,6, 11,L	FU5 4,6, L 6,11	6,11	6,11	6,11
POST		POST	FU1	FU2	4,6,1	FU4 4,6,	FU5 4,6, L		6,11	
	8	POST	FU1	FU2	4,6,1 1	FU4 4,6, 11,L	FU5 4,6, L 6,11	6,11	6,11	6,11
POST FU1 FU2 FU3	8	POST	FU1	FU2	4,6,1 1	FU4 4,6, 11,L	FU5 4,6, L 6,11	6,11	6,11	6,11
POST FU1 FU2 FU3 FU4	8	POST	FU1	FU2	4,6,1 1	FU4 4,6, 11,L	FU5 4,6, L 6,11	6,11	6,11	6,11
POST FU1 FU2 FU3 FU4 FU5	8	POST	FU1	FU2	4,6,1 1	FU4 4,6, 11,L	FU5 4,6, L 6,11	6,11	6,11	6,11
POST FU1 FU2 FU3 FU4	8	POST	FU1	FU2	4,6,1 1	FU4 4,6, 11,L	FU5 4,6, L 6,11	6,11	6,11	6,11

Upper diagonal: p < 0.0005 Lower diagonal: 0.5 Logits of difference

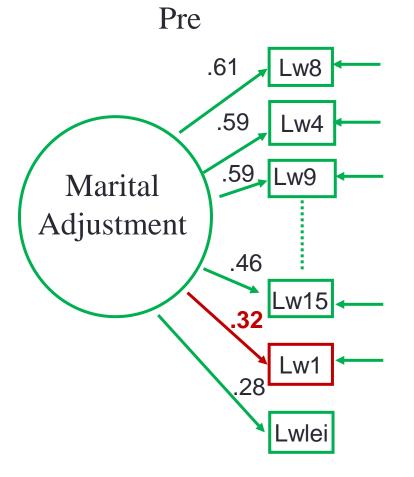
Multiple Groups Confirmatory Factor Analysis (CFA)

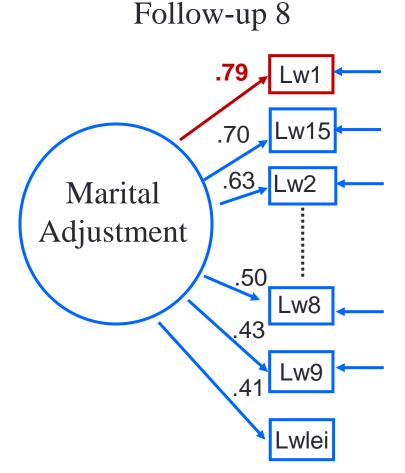
- Conducted pairwise, between each adjacent wave of data, e.g., pre vs post, post vs follow-up 1, etc.
- Series of tests to assess stability of factor structure across waves of data
- Mplus software used with WLSMV estimator
 - First assessed plausibility of the one-factor CFA model
 - Then tested invariant factor loadings and item thresholds

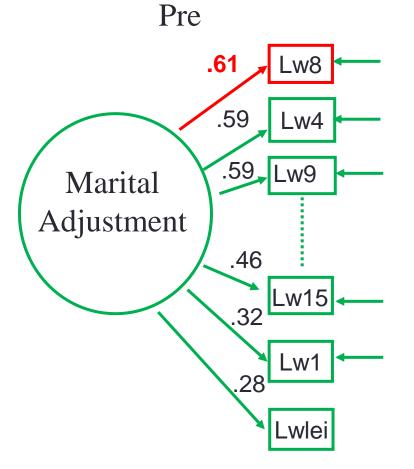

Multiple Groups CFA Results

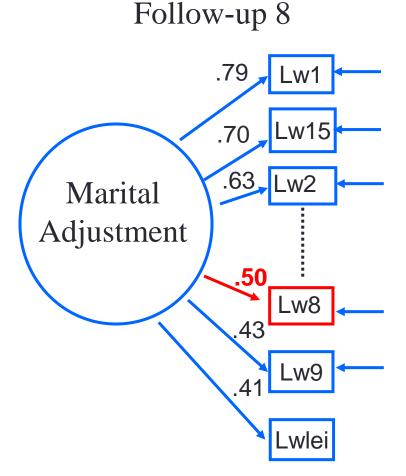
- Two items, 14 and 16, were deleted due to low variance and contribution to lack of overall model fit, particularly in early waves
- The single-factor model fit the data fairly well across most waves, with some minor modification
 - Two item residual covariances were estimated across each wave, e.g., lw4 and lw6 (sex and affection)
- When testing invariance of adjacent waves, the factor structure, loadings, and thresholds were stable across most waves

Multiple groups CFA results - cont'd


- However, some factor loadings began to "shift" across time
 - For example, loadings differed between the post assessment and first follow-up, between follow-up waves 2 and 3, and between pre/post and later waves
- Differences between non-adjacent waves indicated changes in magnitude and relative ordering of items
 - Several highest loading items during early phases became lowest later on, and vice versa
 - Patterns suggest construct definition changed across time


Loading Noninvariance Illustrated




Loading Noninvariance Illustrated

Loading Noninvariance Illustrated

Conclusions and Recommendations

- Evaluators interested in examining change across time need to ensure measurement equivalence prior to conducting tests of mean difference
- For standardized achievement tests used across different grade levels, this is usually accomplished by vertical equating
 - Though this approach has also been found inadequate as time intervals increase

Conclusions and recommendations – cont'd

- For measures of affective traits, evaluators should consult, *a priori*, theoretical and empirical evidence supporting stability of the trait
- Findings of nonequivalence "after the fact" leave few options
 - Delete nonequivalent items if possible
 - Conduct "think-aloud" protocols
 - Use the nonequivalence itself as something informative about the nature of changes across time

Take-home Message

- Documentation of prior reliability and validity does not ensure that scores/inferences from your sample are reliable/valid
 - Evaluators should conduct reliability and validity analyses for their sample
- Longitudinal research further requires evidence of reliable/valid scores for each wave of data
- Tests of mean differences cannot be trusted without evidence of equivalent measurement across time

Contact Information

- Antonio Olmos
 - polmos@du.edu
- Susan Hutchinson
 - susan.hutchinson@unco.edu