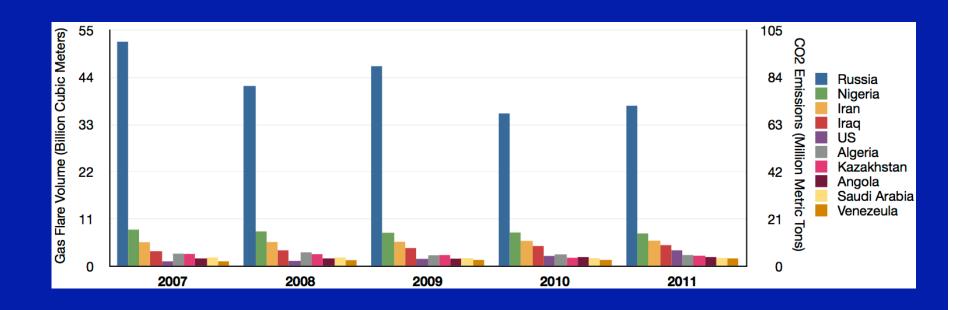

Our Climate: A Global Challenge

Academy for Lifelong Learning Denver, CO April 9, 2015 JFOrmes@comcast.net

Greenhouse Effect: methane

Enteric: related to the intestines

Ruminant: mammals that use fermentation in the stomach cattle, goats, sheep, giraffes, yaks, deer, elk, camels, llamas, antelope, and yes, kangaroos, wallabies



Methane compared to CO₂

as a greenhouse gas

Per pound: CH_4 is 20-25 times more powerful than CO_2 Per molecule: CH_4 is 7-9 times more powerful than CO_2

Biological formation of methane

Anaerobic decomposition of organic material by methanogenic bacteria (flooded soils, wetlands, landfills, digestive tracts).

 $2CH_2O$ (formaldehyde) -> CH_4 (methane) + CO_2 (carbon dioxide)

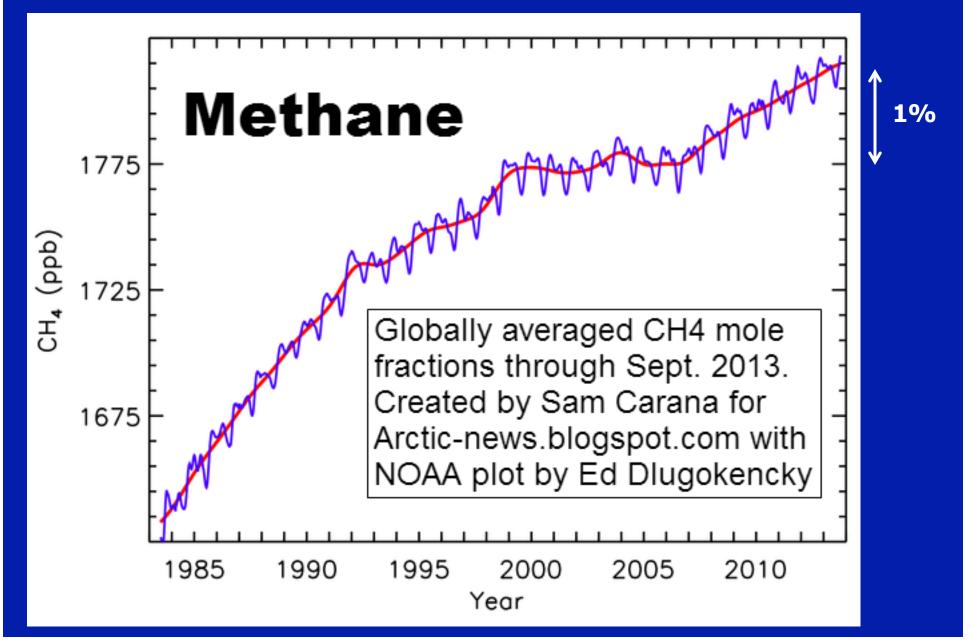
Formaldehyde is ubiquitous in living organisms.

Methane production is temperature dependent, with a maximum reaction rate between 37 and 45 °C (98.6 & 113 °F).

Origin CH₄ Emission Mass (M metric tons/yr)

Sources

Natural Emissions	
Wetlands (incl. rice agriculture)	225
Termites	20
Ocean	15
Hydrates	10
Natural Total	270
Anthropomorphic Emissions	
Energy	110
Landfills	4(
Ruminates (Livestock)	115
Waste treatment	25
Biomass burning	4(
Anthropogenic Total	330


Sinks

Soils	-30
Tropospheric OH	-510
Stratospheric loss	-40
Sink Total	-580

Emissions + Sinks Imbalance (trend) +20 M tons/year

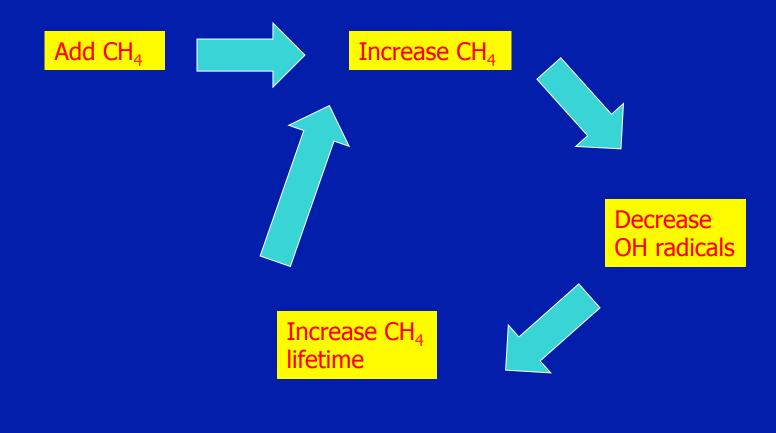
Recall C mass from CO₂ was 10 billion tons/yr

Methane trend

Methane Sinks: OH⁻

Methane is rapidly converted to CO₂ in the atmosphere

production of OH radicals


 O^- + H₂O -> 2OH⁻ UV dissociation of H₂O₂ (H₂O₂ is hydrogen peroxide) $CH_4 + OH^- -> CH_3^- + H_2O$ $CH_3 + OH^- -> CH_2O^- + H_2O$ 9.6 years $CH_2O + 2OH^- -> CO^- + 2H_2O$ $CO + OH^- -> CO_2 + H^-$

OH comes from excited O and water. See *Methane and Carbon Monoxide in the Troposphere* <u>http://www.atmosp.physics.utoronto.ca/people/loic/chemistry.html#2.4%20Oxidation</u> <u>%20of%20Carbon</u>

Excessive methane can reduce the OH radical population in the atmosphere and live longer. See Houweling thesis. Berkeley

See also <u>http://www.atmosp.physics.utoronto.ca/people/loic/chemistry.html#3.1</u>

Positive Feedback methane

Methane lifetime

Net of several reactions:

- $CH_4 + OH^- \rightarrow CO_2 + H_2O$
- 8-10 year lifetime
- vicious cycle, positive feedback

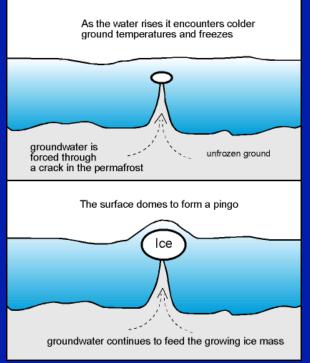
 E.g. 1% increase in CH₄ -> 0.32% decrease in OH -> effective lifetime - 12-15 years

Permafrost melt releases CH₄ and CO₂.

Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production, Hodgkins et al. 2014, doi: 10.1073/pnas.1314641111

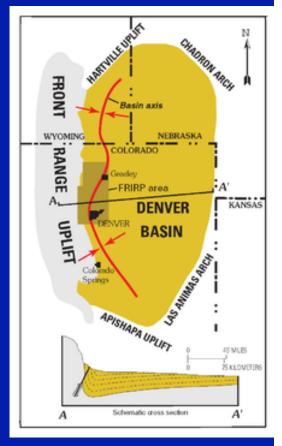
On longer time scales, ~1000 years, the lakes formed, called thermokarst lakes, may absorb more carbon than is released. This absorption of CO_2 is the result of the slow development of biological activity in the lakes.

Anthony et al., Nature, 2014



A Pingo

A pingo, also called a hydrolaccolith, is a mound of earth-covered ice found in the Arctic and subarctic that can reach up to 70 metres (230 ft) in height and up to 600 m (2,000 ft) in diameter. The term originated as the Inuvialuktun word for a small hill. A pingo is a periglacial (nearby to glaciers) landform, which is defined as a nonglacial landform or process linked to colder climates.



Natural gas: Gain lost via fracking?

Natural gas (mostly CH_4) emits about half as much CO_2 as coal per unit of energy when burned, but the 4-8% losses of CH_4 to the atmosphere offsets most of the gain. (See "Methane and the greenhouse-gas footprint of natural gas from shale formations", Howarth, Santoro, and Ingraffea, 2011, Climatic Change, **106**, p 679)

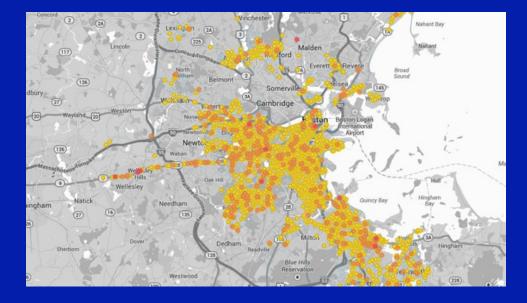
Samples of air from a tower north of Denver, Colorado, showed that natural-gas producers in the Denver-Julesburg Basin are losing about 4% of their gas to the atmosphere — not including additional losses in the pipeline and distribution system. (See Tollefson, 2012, Nature, **482**, and Pétron et al., 2014, J. Geophysical Res, in press)

- CH₄ is not much better than coal unless this lost gas can be recaptured.
 - loss is more than double the official inventory
 - roughly in line with estimates made in 2011
 - challenged by industry

FRIRP: Front Range Infrastructure Resources Project

Methane

Recent study (Caulton et al., 2014, Proc. NAS, doi: 10.1073/pnas.1316546111) found sources of methane in southwestern Pennsylvania in June 2012 with emissions rates 1,000 times higher than those estimated by the EPA.


White House ordered the EPA to identify ways to cut methane from oil and gas production, with any new rules to be in place by the end of 2016. Why so long?

Google car detecting methane leaks

red dots indicate places where methane was leaking at a rate of more than 60,000 liters per day (sewer pipes)

also detects leaking natural gas vehicles

Katey Walter Antony, Univ. of Alaska, Fairbanks

https://www.youtube.com/watch?v=YegdEOSQotE

Conclusion

Methane is adding to the warming problem.