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Notice that the only difference with the equations we use to solve the OLS is the fact that we add the weight 

matrix (WEIGHT) to both XTX-1 and XTy
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The equations used to estimate the coefficients are very similar to those used in solving the Ordinary Least 
Squares (OLS): 
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The matrix containing the weights will be a diagonal matrix, where the elements of the main diagonal have the 
weights to be used in the estimation
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Below we are solving a very simple linear regression to illustrate how to compute a weighted regression using 
matrix algebra.
In this case, we know the weights already. However, in some more common instances, you may have to 
estimate the weights by perhaps using the standard deviations of the IV's in the model

Calculating a weighted regression using matrix algebra

weightedRegression.mcd 1



(c) Antonio Olmos, 2013

WEIGHT

0.713

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0.983

0

0

0

0

0

0

0

0.749

0

0

0

0

0

0

0

0.213

0

0

0

0

0

0

0

0.031

0

0

0

0

0

0

0

0
























WEIGHT

w0

0

0

0

0

0

0

0

w1

0

0

0

0

0

0

0

w2

0

0

0

0

0

0

0

w3

0

0

0

0

0

0

0

w4

0

0

0

0

0

0

0

w5

0

0

0

0

0

0

0

w6































wi 0.927wi 1 dif 3 
3



dif 0.293dif
0.5578196 2.021727

5


The proposal suggested in Guo & Fraser is to 
use a percent of the cases (what they call XN. 
in the Excel spreadsheet I illustrated estimates 
using X= 0.25), and the equation to the left 
illustrates how to calculate that value 
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Notice that the scaling procedure we use here 
matches what is called in the Excel 
spreadsheet "based on normalization". You 
must estimate the maximum difference and 
then you use that in the denominator.
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Thus, for the original data, when x = 0.558, and y = 18.637, the predicted value is now: 20.593. Below, we 
illustrate how to compute the value for x = 2.022: 
In order to compute the new value, we change the weight to reflect the new values:
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When estimating a Local linear regression (or LOcally WEighted regreSSion, thus the name), the weights in 
the WEIGHT matrix represent the closeness to the value being estimated. At every point in the estimation, a 
low-level polynomial regression (usually degree 1 or 2) is fitted to a subset of the data that is close to the 
point being estimated. Usually, the weight of 1 is assigned to the observation being fitted. And for the 
purposes of fitting the new lines, it is also important to find what is the predicted value (the y-hat) for the 
value being fitted.

Using weighted regression in Local Linear regression (LOESS/LOWESS)

weightedRegression.mcd 2
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This time, when x = 2.022, and y = 103.496, the predicted value is: 107.16

weightedRegression.mcd 3
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Estimating weighted linear regression using R 

> w <- c(1, 0.903349126, 0.75988972, 0.426217146, 0.086861708, 0.010723079, 0) 
> y <- c(18.63654, 103.49646, 150.35391, 190.51031, 208.70115, 213.71135, 228.49353) 
> x <- c(0.5578196, 2.0217271, 2.5773252, 3.4140288, 4.3014084, 4.7448394, 5.1073781) 
> reg1 <- lm(y~x, weight=w) 
> summary(reg1) 
 
Call: 
lm(formula = y ~ x, weights = w) 
 
Weighted Residuals: 
      1       2       3       4       5       6       7  
-1.9565 -3.3413  9.1907  0.8529 -9.6927 -5.5975  0.0000  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -12.337      8.686   -1.42  0.22856     
x             59.033      3.893   15.16  0.00011 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.508 on 4 degrees of freedom 
Multiple R-squared: 0.9829, Adjusted R-squared: 0.9786  
F-statistic:   230 on 1 and 4 DF,  p-value: 0.0001103  
 
> pred1 <- fitted.values(reg1) 
> pred1 
        1         2         3         4         5         6         7  
 20.59302 107.01200 139.81067 189.20386 241.58862 267.76572 289.16749 
 
## calculating another value (notice that the weights are computed in excel 
 
> w <- c(0.712642, 1, 0.982589, 0.748942, 0.212501, 0.030572, 0) 
> y <- c(18.63654, 103.49646, 150.35391, 190.51031, 208.70115, 213.71135, 
228.49353) 
> x <- c(0.5578196, 2.0217271, 2.5773252, 3.4140288, 4.3014084, 4.7448394, 
5.1073781) 
> reg1 <- lm(y~x, weight=w) 
> summary(reg1) 
 
Call: 
lm(formula = y ~ x, weights = w) 
 
Weighted Residuals: 
      1       2       3       4       5       6       7  
 -4.841  -3.664  11.669   3.990 -12.623  -8.297   0.000  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   -7.176     12.646  -0.567 0.600728     
x             56.554      4.938  11.454 0.000332 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 10.21 on 4 degrees of freedom 
Multiple R-squared: 0.9704, Adjusted R-squared: 0.963  
F-statistic: 131.2 on 1 and 4 DF,  p-value: 0.0003316  
 
> pred1 <- fitted.values(reg1) 
> pred1 
        1         2         3         4         5         6         7  
 24.37072 107.16031 138.58151 185.90031 236.08503 261.16275 281.66571  


