Calculating a weighted regression using matrix algebra

Below we are solving a very simple linear regression to illustrate how to compute a weighted regression using matrix algebra.
In this case, we know the weights already. However, in some more common instances, you may ha ve to estimate the weights by perhapsusing the standard deviations of the IV's in the model

The matrix containing the weights will be a dia gonal matrix, where the elements of the main diagonal ha ve the weights to be used in the estimation

WEIGHT $:=\left(\begin{array}{ccccccc}w_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & w_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & w_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & w_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w_{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & w_{5} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & w_{6}\end{array}\right) \quad$ WEIG HT $=\left(\begin{array}{ccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.903 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.76 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.426 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.087 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.011 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

The equations used to estimate the coeffic ients are very similar to those used in solving the Ordinary Least Squares (OLS):

$$
\begin{array}{ll}
\text { XTX_1 := (X_MATRIX } \left.{ }^{\top} \cdot \text { WEIG HT•X_MATRIX }\right)^{-1} & \text { XTX_1 }=\left(\begin{array}{cc}
1.339 & -0.525 \\
-0.525 & 0.269
\end{array}\right) \\
\text { XTy := (X_MATRIX } \left.{ }^{\top} \cdot \text { WEIG HT•y }\right) & \text { XTy }=\binom{328.001}{859.945}
\end{array}
$$

Notice that the only difference with the equations we use to solve the OLS is the fact that we add the weight matrix (WEIG HT) to both $X^{\top} X^{-1}$ a nd $X^{\top} y$

$$
B:=\text { XTX_1.XTy } \quad B=\binom{-12.337}{59.033}
$$

Using weighted regression in Local Linear regression (LOESS/LOWESS)

When estimating a Local linear regression (orLOc ally WEighted regreSSion, thus the name), the weights in the WEIGHTmatrix represent the closeness to the value being estimated. At every point in the estimation, a low-level polynomial regression (usually degree 1 or 2) is fitted to a subset of the data that is close to the point being estimated. Usually, the weight of 1 is assigned to the observation being fitted. And for the purposes of fitting the new lines, it is also important to find what is the predicted value (the y-hat) for the value being fitted.
$b 0:=B_{0} \quad b 0=-12.337 \quad b 1:=B_{1} \quad b 1=59.033$
$y _$hat $:=b 0+b 1 \cdot x \quad\left(\begin{array}{c}0.558 \\ 2.022 \\ 2.577 \\ 3.414 \\ 4.301 \\ 4.745 \\ 5.107\end{array}\right) \quad y=\left(\begin{array}{c}18.637 \\ 103.496 \\ 150.354 \\ 190.51 \\ 208.701 \\ 213.711 \\ 228.494\end{array}\right) \quad \mathrm{w}=\left(\begin{array}{c}1 \\ 0.903 \\ 0.76 \\ 0.426 \\ 0.087 \\ 0.011 \\ 0\end{array}\right) \quad y_{-}$hat $=\left(\begin{array}{c}20.593 \\ 107.012 \\ 139.811 \\ 189.204 \\ 241.589 \\ 267.766 \\ 289.167\end{array}\right)$

Thus, for the original data, when $x=0.558$, and $y=18.637$, the predicted value is now: 20.593. Below, we illustrate how to compute the va lue for $x=2.022$:
In order to compute the new value, we change the weight to reflect the new values:

Notice that the scaling procedure we use here matches what is called in the Excel spread sheet "based on nomalization". You must estimate the maximum difference and then you use that in the denominator.

The proposal suggested in Guo \& Fraser is to use a percent of the cases (what they call XN. in the Excel spread sheet I illustrated estimates using $X=0.25$), and the equation to the left illustrates how to calculate that value

WEIG HT:=($\left.\begin{array}{ccccccc}w_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & w_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & w_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & w_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w_{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & w_{5} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & w_{6}\end{array}\right) \quad$ WEIG HT $=\left(\begin{array}{ccccccc}0.713 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.983 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.749 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.213 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.031 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
& \text { XTX_1 : }=\left(\text { X_MATRIX }^{\top} \cdot \text { WEIG HT•X_MATRIX }\right)^{-1} \quad \text { XTX_1 }=\left(\begin{array}{cc}
1.533 & -0.543 \\
-0.543 & 0.234
\end{array}\right) \\
& \text { XTy }:=\left(\text { X_MATRIX }^{\top} \cdot \text { WEIG HT• } \cdot \mathrm{y}\right) \\
& X T y=\binom{458.078}{1.306 \times 10^{3}} \\
& \mathrm{~B}:=\text { XTX_1. } \mathrm{XTY} \quad \mathrm{~B}=\binom{-7.176}{56.554} \\
& b 0:=B_{0} \quad b 0=-7.176 \quad b 1:=B_{1} \quad b 1=56.554 \\
& y _ \text {hat }:=b 0+b 1 \cdot x=\left(\begin{array}{c}
0.558 \\
2.022 \\
2.577 \\
3.414 \\
4.301 \\
4.745 \\
5.107
\end{array}\right) \quad y=\left(\begin{array}{c}
18.637 \\
103.496 \\
150.354 \\
190.51 \\
208.701 \\
213.711 \\
228.494
\end{array}\right) \quad w=\left(\begin{array}{c}
0.713 \\
1 \\
0.983 \\
0.749 \\
0.213 \\
0.031 \\
0
\end{array}\right) \quad y _ \text {hat }=\left(\begin{array}{c}
24.371 \\
107.16 \\
138.582 \\
185.9 \\
236.085 \\
261.163 \\
281.666
\end{array}\right)
\end{aligned}
$$

This time, when $x=2.022$, and $y=103.496$, the predic ted value is 107.16

Estimating weighted linear regression using R

```
>W <- c(1, 0.903349126, 0.75988972, 0.426217146, 0.086861708, 0.010723079, 0)
>y<-c(18.63654,103.49646,150.35391,190.51031, 208.70115, 213.71135, 228.49353)
> x<cc(0.5578196, 2.0217271, 2.5773252, 3.4140288, 4.3014084, 4.7448394, 5.1073781)
> regl <- Im(y~x, weight=w)
> summary(regl)
Cal|:
| m(formula = y ~ x, weights = w)
```

Weighted Residuals:
-1.956 ${ }^{1}-3.3413^{2} \quad 9.1907^{3} \quad 0.8529^{4}-9.6927^{5}-5.5975^{6} \quad 0.0000^{7}$
Coefficients:

	Estimate	Std	E	value	$\operatorname{Pr}(>1$
(Intercept)	12.337		8.686	-1.42	0.22856
X	59.033		3.893	15.16	0.00011

Signif. codes: $0^{\prime * * *} 0.001^{\prime * *} 0.01^{\prime *} 0.05^{\prime}, 0.1^{\prime \prime} 1$
Residual standard error: 7.508 on 4 degrees of freedom
Multiple R-squared: 0.9829, Adjusted R-squared: 0.9786
F-statistic: 230 on 1 and 4 DF, $p-v a l u e: 0.0001103$
> predl <- fitted.values(regl)
$>\operatorname{pred} 1$

\#\# calculating another value (notice that the weights are computed in excel
$>W<-c(0.712642,1,0.982589,0.748942,0.212501,0.030572,0)$
$>y<-c(18.63654,103.49646,150.35391,190.51031,208.70115,213.71135$,
228.493531
$>x<-c(0.5578196,2.0217271,2.5773252,3.4140288,4.3014084,4.7448394$,
5. 10737811
> regl <- $\mid m(y \sim x$, weight =w)
> summary(regl)
Call:
| m (formula $=y \sim x$, weights $=w)$

Weighted Residuals:

| -4.841 | -3.664 | 11.669 | 3.990^{4} | -12.623^{5} | -8.297^{6} | 0.000^{7} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Coefficients:

