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ABSTRACT

This article describes the design principles behind a set of research-based

software microworlds included in the Building Blocks program, a PreK to

grade 2 software-based mathematics curriculum. Building Blocks’ approach is

finding the mathematics in, and developing mathematics from, children’s

activity. The materials are designed to help children extend and mathematize

their everyday activities, from building blocks to art to songs and stories

to puzzles. The 9-step design process model that defines what we mean by

“research-based” is described and illustrated.

Building Blocks is a PreK to grade 2 software-based mathematics curriculum

development project, designed to comprehensively address the Principles and

Standards for School Mathematics (National Council of Teachers of Mathematics,

2000). This article describes the design principles behind a set of research-based
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software microworlds included in the Building Blocks program. We begin with a

justification for the project’s software, including a discussion of what it means to

conduct “research-based” curriculum development. We then examine the design

principles of the Building Blocks project and provide examples.

RATIONALE FOR THE

BUILDING BLOCKS PROJECT

First, there is a need to examine whether there is a need for additional software in

early childhood mathematics. Hundreds of products are now available for young

children that include mathematics activities in one form or another. However,

most of these products fall into one of two categories. First, “edutainment” has

attractive multimedia features but limited mathematics content and pedagogy

(even the drill in these packages is badly designed, not using the computer’s

management capabilities). Second, there are discovery-oriented environments that

appear interesting, but are usually explored only on the surface level by young

children. In both cases, there is little learning, by children or by those in the

education field (Clements & Battista, 2000; Clements & Sarama, 2002).

In either case, theoretical and empirical support for the use of the software to

support learning is usually lacking. And this speaks to one of the main points of

this article: The necessity of creating and, further, insisting upon, research-based

curricula and educational software. We contend that research-based curriculum

development efforts can contribute to (a) more effective curriculum materials

because the research reveals critical issues for instruction, (b) better under-

standing of students’ mathematical thinking, and (c) research-based change in

mathematics curriculum (Clements, Battista, Sarama, & Swaminathan, 1997;

Schoenfeld, 1999). Indeed, we believe that education will not improve sub-

stantially without a system-wide commitment to research-based curriculum and

software development.

Let us be specific here: Many software developers do claim a research basis for

their materials, but these claims are often vacuous. We have identified nine

possibilities (Clements, 2002; Sarama & Clements, 2001).

1. Broad philosophies, theories, and empirical results on learning and teaching

are considered when creating curriculum.

2. Empirical findings on making activities educationally effective—moti-

vating and efficacious—serve as general guidelines for the generation of

activities.

3. Research is used to identify mathematics that is developmentally appro-

priate and interesting to students in the target population.

4. Activities are structured to be consistent with empirically-based learning

models of children’s thinking and learning.
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5. Sets of activities are sequenced according to learning trajectories through the

concepts and skills that constitute a domain of mathematics.

6. Activities or activity sets are extensively field-tested from their first

inception and early intensive interpretive work, to classroom-based studies,

and are revised substantially after each iteration.

7. Summative evaluation studies are conducted, including issues of scalability.

8. Each phase of the development process is documented, reflected upon,

analyzed, and reported in the scientific literature.

Another mode that is spurious, but probably frequent in practice, should be

mentioned for completeness.

9. Following the creation of a curriculum, research results that are ostensibly

consistent with it are cited post hoc.

Given this variety of possibilities, claims that a curriculum is based on research

should be questioned to reveal the exact nature between the two. Further, to realize

the full potential of “research and development” for gaining knowledge, we need

to add another process. We contend that research has played a minimum role in

the development of most software packages. In the majority of cases, testing the

software with target users is rare (which may account for the generally low quality

of the software). Often, there is only minimal formative research, such as a polling

of easily accessible peers, rather than any systematic testing with an appropriate

target audience. “Beta” testing is done sometimes, but late enough in the process

that changes are minimal, given the time and resources dedicated to the project

already and the limited budget and pressing deadlines that remain (Char, 1989;

Clements & Battista, 2000). Such testing is more summative than formative

(Schauble, 1990).

Even when conducted, most summative evaluations are limited in scope.

The majority of studies have used traditional quantitative designs in which the

“computer” was the “treatment.” The general conclusion drawn was that such

treatments lead to moderate but statistically significant learning gains, especially

in mathematics (Becker, 1992; Clements & Nastasi, 1992; Kelman, 1990;

Roblyer, Castine, & King, 1988). However, this conclusion must be tempered

with the realization that most of the software used presented drill and practice

exercises. Therefore, the potential of software based on different approaches to

learning, such as mathematical microworlds (as well as the appropriateness of

the methodology for evaluating such different types of software), has not been

addressed adequately.

In contrast, Building Blocks is structured on empirically-based learning tra-

jectories through the big ideas and skill areas of mathematics (Clements &

Battista, 1992; Fuson, 1997). It applies research on making computer software for

young children motivating and educationally effective (Clements, Nastasi, &

Swaminathan, 1993; Clements & Swaminathan, 1995). It includes mathematics
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that research identifies as developmentally appropriate for and interesting to

young children. Finally, it is based on a design process model that includes

specification of mathematical ideas (computer objects) and processes/skills

(computer tools) and extensive field-testing from the first inception through to

large summative evaluation studies (Clements & Battista, 2000). The next section

describes the phases of this design process model.

A MODEL FOR THE DEVELOPMENT OF

RESEARCH-BASED MICROWORLDS

In our model, research is conducted at multiple levels, with the goal of making

the research relevant to educators in many positions. Feedback from the field

continually results in further refinement of the design of the software and

activities, which then results in further testing. In this way, we continually loop

through the earlier phases of the model.

Phase 1: Draft the Initial Goals

The first phase begins with the identification of a significant domain of

mathematics. The learning of the domain should make a substantive contribution

to students’ mathematical development. Learning about students’ mathematical

activity in the domain should make a similar contribution to research and theory.

One of the reasons underlying the name we gave to our project was our desire

that the materials emphasize the development of basic mathematical building

blocks—ways of knowing the world mathematically—organized into two areas:

(a) spatial and geometric competencies and concepts and (b) numeric and

quantitative concepts, based on the considerable research in that domain. Research

shows that young children are endowed with intuitive and informal capabilities

in both these areas (Bransford, Brown, & Cocking, 1999; Clements, 1999a). For

example, research shows that preschoolers know a considerable amount about

shapes (Clements, Swaminathan, Hannibal, & Sarama, 1999; Lehrer, Jenkins, &

Osana, 1998), and they can do more than we assume, especially working with

computers (Sarama, Clements, & Vukelic, 1996). In the broad area of geometry

and space, they can do the following: recognize, name, build, draw, describe,

compare, and sort two- and three-dimensional shapes, investigate putting shapes

together and taking them apart, recognize and use slides and turns, describe spatial

locations such as “above” and “behind,” and describe, and use ideas of direction

and distance in getting around in their environment (Clements, 1999a). In the area

of number, preschoolers can learn to count with understanding (Fuson, 1988;

Gelman, 1994), recognize “how many” in small sets of objects (Clements, 1999b;

Reich, Subrahmanyam, & Gelman, 1999), compare numbers (Griffin, Case, &

Capodilupo, 1995), and learn simple ideas of addition and subtraction (Aubrey,

1997; Clements, 1984; Siegler, 1996). They can count higher and generally
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participate in a much more exciting and varied mathematics than usually

considered (Ginsburg, Inoue, & Seo, 1999; Trafton, 1997). Challenging number

activities don’t just develop children’s number sense; they can also develop

children’s competencies in such logical processes as sorting and ordering

(Clements, 1984). Three mathematical themes are woven through both of these

main areas: (a) patterns, (b) data, and (c) sorting and sequencing.

We focus on a single area for this article and a single related microworld from

the many included in Building Blocks. Early in the project, we determined that a

basic, often neglected, area of children’s mathematics was the composition and

decomposition of two-dimensional geometric figures (other domains in geometry

include shapes and their properties, transformations/congruence, and measure-

ment). The geometric composition domain was determined to be significant for

students in two ways. First, it is a basic geometric competence from building

with geometric shapes in the preschool years to sophisticated interpretation and

analysis of geometric situations in high school mathematics and above. Second,

the concepts and actions of creating and then iterating units and higher-order units

in the context of constructing patterns, measuring, and computing are established

bases for mathematical understanding and analysis (Clements et al., 1997;

Reynolds & Wheatley, 1996; Steffe & Cobb, 1988). The domain is significant to

research and theory in that there is a paucity of research on the trajectories students

might follow in learning this content.

Phase 2: Build an Explicit Model of

Students’ Knowledge Including Hypothesized

Learning Trajectories

In this phase, developers build a sufficiently explicit cognitive model of

students’ learning that describes the processes involved in the construction of

the goal mathematics concepts. Although extant models may be available, they

vary in degree of specificity. Developers build these models, or fill in details

of existing models, by using clinical interviews and observations to examine

students’ knowledge of the content domain, including intuitive ideas, and informal

strategies used to solve problems. These cognitive models are then synthesized

into hypothesized learning trajectories (Cobb & McClain, in press; Gravemeijer,

1999; Simon, 1995).

To continue our example, the basic structure of our model of students’

knowledge of shape composition was determined by observations made in the

context of early research (Sarama et al., 1996) and was refined through a research

review and a series of clinical interviews and focused observations by research

staff and teachers (Clements, Sarama, & Wilson, 2001).

1. Pre-Composer. Manipulates shapes as individuals, but is unable to combine

them to compose a larger shape.
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2. Piece Assembler. Similar to level 1, but can concatenate shapes to form

pictures. In free-form “make a picture” tasks, for example, each shape used

represents a unique role, or function in the picture. Can fill simple frames using

trial and error (Mansfield & Scott, 1990; Sales, 1994). Uses turns or flips to do so,

but again by trial and error; cannot use motions to see shapes from different

perspectives (Sarama et al., 1996). Thus, children at levels 1 and 2 view shapes

only as wholes and see no geometric relationship between shapes or between parts

of shapes (i.e., a property of the shape).

3. Picture Maker. Can concatenate shapes to form pictures in which several

shapes play a single role, but uses trial and error and does not anticipate creation

of a new geometric shape. Chooses shapes using gestalt configuration or one

component such as side length (Sarama et al., 1996). If several sides of the

existing arrangement form a partial boundary of a shape (instantiating a schema

for it), the child can find and place that shape. If such cues are not present, the child

matches by a side length. The child may attempt to match corners, but does not

possess angle as a quantitative entity, so will try to match shapes into corners of

existing arrangements in which their angles do not fit. Rotating and flipping are

used, usually by trial-and-error, to try different arrangements (a “picking and

discarding” strategy). Thus, can complete a frame that suggests that placement of

the individual shapes but in which several shapes together may play a single

semantic role in the picture.

4. Shape Composer. Combines shapes to make new shapes or fill frames, with

growing intentionality and anticipation (“I know what will fit”). Chooses shapes

using angles as well as side lengths. Eventually considers several alternative

shapes with angles equal to the existing arrangement. Rotation and flipping are

used intentionally (and mentally, i.e., with anticipation) to select and place shapes

(Sarama et al., 1996). Can fill complex frames (Sales, 1994) or cover regions

(Mansfield & Scott, 1990). Imagery and systematicity grow within this and the

next levels. In summary, there is intentionality and anticipation, based on shapes’

attributes, and thus, the child has imagery of the component shapes, although

imagery of the composite shape develops within this level (and throughout the

next levels).

5. Substitution Composer. Deliberately forms composite units of shapes

(Clements et al., 1997) and recognizes and uses substitution relationships among

these shapes (e.g., two pattern block trapezoids can make a hexagon).

6. Shape Composite Iterater. Constructs and operates on composite units

intentionally. Can continue a pattern of shapes that leads to a “good covering," but

without coordinating units of units.

7. Shape Composer with Units of Units. Builds and applies units of units

(superordinate units). For example, in constructing spatial patterns, children

extend their patterning activity to create a tiling with a new unit shape—a

(higher-order) unit of unit shapes that they recognize and consciously construct;
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that is, children conceptualize each unit as being constituted of multiple singletons

and as being one higher-order unit (Clements et al., 1997).

The complete result of this phase is an explicit cognitive model of students’

learning of mathematics in the target domain. Ideally, such models specify knowl-

edge structures, the development of these structures, including mechanisms or

processes related to this development, and trajectories that specify hypothetical

routes that children might take in learning the mathematics.

Phase 3: Create an Initial Design for

Software and Activities

In this phase, developers create a basic design for the software and the activities.

We made the philosophical and pedagogical decision to base the Building Blocks

project on the following approach: Finding the mathematics in, and developing

mathematics from, children’s activity. The materials should help children extend

and mathematize their everyday activities, from building blocks (the second

meaning to our projects’ name) to art to songs and stories to puzzles. Activities

should be designed based on children’s experiences and interests, with an

emphasis on supporting the development of mathematical activity. Mathemati-

zation emphasizes representing—creating models of activity with mathematical

objects, such as numbers and shapes, and mathematical actions, such as counting

or transforming shapes. Materials should embody these actions-on-objects in

a way that mirrors what research has identified as critical mental actions—

children’s cognitive building blocks (the third meaning of the name). These

cognitive building blocks include creating, copying, and combining objects such

as shapes or numbers.

It is just these cognitive building blocks that must be specified for this phase of

our model. The central component of this phase of the design process is to describe

the objects that will constitute the software environment and the actions that may

be performed on these objects based on the model of students’ learning generated

in phase 2. These actions-on-objects should mirror the hypothesized mathematical

activity of students. Offering students such objects and actions to be performed on

these objects is consistent with the Vygotskian theory that mediation by tools and

signs is critical in the development of human cognition (Steffe & Tzur, 1994).

Further, designs based on objects and actions force the developer to focus on

explicit actions or processes and what they will mean to the students.

Objects are, of course, a form of on-screen manipulative. Indeed, the flexi-

bility of computer technologies allows the creation of a vision less hampered by

the limitations of traditional materials and pedagogical approaches. This raises

an important issue that must be addressed before we continue our example.

Some early childhood educators question the benefit of using manipulatives

on computer. They argue that young children benefit much more from the

tactile experience of interacting with concrete manipulates. But can on-screen
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manipulatives still be “concrete?” One has to examine what “concrete” means.

Sensory characteristics do not adequately define it (Clements & McMillen,

1996; Wilensky, 1991).

First, it cannot be assumed that children’s conceptions of the manipulatives are

similar to those of adults (Clements & McMillen, 1996). For example, a student

working on place value use the “ten stick” as indicating one and vice versa

(Hiebert & Wearne, 1992). Second, physical actions with certain manipulatives

may suggest different mental actions than those we wish students to learn. For

example, researchers found a mismatch among students using the number line to

perform addition. When adding five and four, the students located 5, counted “one,

two, three, four,” and read the answer. This did not help them solve the problem

mentally, for to do so they have to count “six, seven, eight, nine” and at the same

time count the counts—6 is 1, 7 is 2, and so on. These actions are quite different

(Gravemeijer, 1991). Thus, manipulatives themselves do not carry the meaning of

the mathematical idea. Students must act on these manipulatives in the context of

well-planned activities, and ultimately reflect on these actions. Later, we expect

them to have a “concrete” understanding that goes beyond these physical manipu-

latives. It appears that there are different ways to define “concrete” (Clements

& McMillen, 1996). We define Sensory-Concrete knowledge as that in which

students must use sensory material to make sense of an idea. For example, at early

stages, children cannot count, add, or subtract meaningfully unless they have

actual things. They build Integrated-Concrete knowledge as they learn. Such

knowledge is connected in special ways. This is the root of the word concrete—“to

grow together.” What gives sidewalk concrete its strength is the combination of

separate particles in an interconnected mass. What gives Integrated-Concrete

thinking its strength is the combination of many separate ideas in an inter-

connected structure of knowledge (Clements & McMillen, 1996).

On this basis, Building Blocks offers children on-screen manipulative shapes as

the mathematical objects. The actions include rigid transformations (slide, turn,

and flip tools), duplication, and de/composition (e.g., glue and axe tools). One

class of activities that involve these mathematical actions-on-objects builds on

young children’s experiences with and love of the everyday activity of puzzles.

Children solve outline puzzles with pattern blocks off and on the computer.

Research shows this type of activity to be motivating for young children

(Sales, 1994; Sarama et al., 1996). On the computer they play “Shape Puzzles”

(see Figure 1), working with shapes and composite shapes as objects, creating,

duplicating, positioning (with geometric motions), combining, and decomposing

both individual shapes (units) and composite shapes (units).

The developers next create a sequence of instructional activities (that use

objects and actions) to move students through the hypothesized learning

trajectories. For the purposes of brief illustration of the essential features, only

the mathematically significant basic elements are described and illustrated in

Figure 2.
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Ample opportunity for student-led, student-designed, open-ended projects must

be included in the set of activities. Design activity on the part of students is

frequently the best way for students to express their creativity and integrate their

learning, and the computer can especially offer support for such projects

(Clements, 2000). For Shape Puzzles, students design their own puzzles with the

shapes; when they click on a “Play” button, their design is transformed into a shape

puzzle that either they or their friends can solve.

We complete this section with two caveats. First, designs, research questions,

and methodologies should remain sensitive to new possibilities. However,

research indicates that technological “bells and whistles” should not become a

central concern: While they can affect motivation, they rarely emerge as critical to

children’s learning. Instead, the critical feature is the degree to which the computer

environment successfully implements education principles born from specific

research on the teaching and learning of specific mathematical topics (Sarama,

2000). Second, basic research principles must be elaborated and refined by

ongoing research and development work that tracks the effectiveness of specific

implementations. This means that curriculum and software is not only based on

research a priori. Research also must be conducted throughout the development

process.
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Phase 4: Investigate the Components

Space limitations constrain our descriptions of all other phases. Phase 4 is

especially interwoven with the previous one. Components of the software are

tested using clinical interviews and observations of a small number of students. A

critical issue concerns how children interpret and understand the screen design,

objects, and actions. A mix of model (or hypothesis) testing and model generation

(e.g., a microethnographic approach, see Spradley, 1979) is used to understand

the meaning that students give to the objects and actions. To accomplish this,

developers may use paper or physical material mock-ups of the software or early

prototype versions.

A small example from the Building Blocks project is our research on children’s

initial interpretation of the actions that each icon might engender. For the decom-

position of units, we had created a hammer icon. Even with minor prompting,

children did not interpret this tool as breaking things apart, but instead as “nailing

down” items (“It will hammer the shapes down harder”) or “hammering it off” the

paper or screen. We therefore created new icons (an axe “chops” shapes apart).

More significant is our work with individual students using the tools. We have

found that the use of these tools encourages children to become explicitly aware of

the actions they perform on the shapes. Refining the tool interface for younger

children while keeping the benefits researched previously is a continuing challenge.

Phase 5: Assess Prototypes and Curriculum

In this phase, the developers continue to evaluate the prototype, rendered in a

more complete form. A major goal is to test hypotheses concerning features of the

computer environment that are designed to correspond to students’ thinking. Do

their actions on the objects substantiate the actions of the researchers’ model of

children’s mathematical activity? If not, should the model be changed, or the

way in which this model is instantiated in the software? Do students use the

tools to perform the actions only with prompting? If so, what type of prompting

is successful? In all cases, are students actions-on-objects enactments of their

cognitive operations (Steffe & Wiegel, 1994), and as models of informal mathe-

matical activity (c.f., Gravemeijer, 1999), in the way the model posits, or merely

trial-and-error or random manipulation? In general, do the microworlds engage

children, mirroring their natural interactions with their environment and extend-

ing the mathematical activity? In Building Blocks, several of the microworlds

employ everyday themes such as setting the table and making cookies. These

microworlds have the advantage of authenticity (Papert, this volume, discusses

setting the table as a type of microworld) as well as serving as a way for children

to mathematize these activities (e.g., in setting tables, using different mathe-

matical actions such as establishing one-to-one correspondence, counting and

using numerals to represent and generate quantities in the solution of variations

of the task).
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Similarly, the developers test the learning trajectories and adjust them as

needed. Using the cognitive model and learning trajectories as guides, and the

software and activities as catalysts, the developer creates more refined models

of particular students. Simultaneously, the developer describes what observed

elements of the teaching and learning environment contributed to student learning.

The theoretical model may involve disequilibrium, modeling, internalization of

social processes, practice, and combinations of these and other processes. The

connection of these processes with specific environmental characteristics and

teaching strategies and student learning is critical.

With so many research and development processes happening, and so many

possibilities, extensive documentation is vital. Videotapes (for later microgenetic

analysis), audiotapes, and field notes are collected. This documentation should be

used also to evaluate and reflect on those components of the design that were based

on intuition, aesthetics, and subconscious beliefs.

In the Building Blocks project, we have found that children using the computer

tools develop compositional imagery. Off-computer, kindergartner Mitchell gave

himself the task of making multiple hexagons. He used a trial-and-error strategy,

not checking to see if he had a hexagon until a shape was completed. On computer,

Mitchell started making a hexagon out of triangles. After placing two, he counted

with his finger on the screen around the center of the incomplete hexagon, imaging

the other triangles. He announced that he would need four more. After placing the

next one, he said, “Whoa! Now, three more!” The intentional and deliberate

actions on the computer led him to form images (decomposing the hexagon

mentally) and predict each succeeding placement. As a second example, consider

Alyssa, whose work is illustrated in the first picture of step 4 (the six hexagons)

in Figure 2. As Alyssa fills the hexagons, she evinces understanding of both

anticipatory use of geometric motions and substitution relationships and therefore

notions of area, equivalence, and congruence.

Phase 6: Conduct Pilot Tests in a Classroom

Teachers are involved in all phases of the design model. Starting with this phase,

a special emphasis is placed on the process of curricular enactment (Ball &

Cohen, 1996). There are two research thrusts. First, teaching experiments con-

tinue, but in a different form. The researchers conduct classroom-based teaching

experiments (including what we call interpretive case studies) with one or two

children. The goal is making sense of the curricular activities as they were

experienced by individual students (Gravemeijer, 1994). Such interpretive case

studies serve similar research purposes as teaching experiments but are conducted

in a naturalistic classroom setting. Videotapes and extensive field notes are

required so that students’ performance can be examined repeatedly for evidence of

their interpretations and learning.
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Second and simultaneously, the entire class is observed for information con-

cerning the usability and effectiveness of the software and curriculum. Ethno-

graphic participant observation is used heavily because we wish to research the

teacher and students as they construct new types of classroom cultures and

interactions together (Spradley, 1980). The focus is on how the materials are used

and how the teacher guides students through the activities (for our preschool

materials, child care providers and parents are also involved; classroom dynamics

cannot be taken as a given). Attention is given to how software experiences

reinforce, complement, and extend learning experiences with manipulatives or

print (Char, 1989) as well as the diversity in the practices of the different early

childhood settings.

This pilot test phase usually involves teachers working closely with the

developers. The class is taught either by a team including one of the developers

and the teacher, or by a teacher familiar with and intensively involved in curricula

development.

In our Building Blocks project, several teachers in multiple settings volunteered

to be a part of this phase of testing. It is important not to choose classrooms

based on convenience, especially considering access to technology. We need to

be able to identify what supports, both curricular and material, teachers will

need to successfully and comfortably use their materials in their school

environments. Results of the field testing extensively influenced the design of our

software and print materials and will be published separately, which brings us to

the final phase.

Phase 7: Publishing

Wider field tests and recursive re-writing of the materials are included in

subsequent phases that space prohibits our describing here (but see Clements,

2002). We do wish to emphasize the difficulties and importance of

publication. The software and curricula may be disseminated through a variety of

channels, from commercial publishers to the Internet. As simple as this seems, this

phase is not unproblematic for both curriculum/software development and

research.

Regarding curriculum, negotiations and cooperation with a commercial pub-

lisher can have a substantive influence on the final software and print materials.

The demands on, and of, publishers, were detailed in a previous section. Suffice

it to say that these same pressures are exerted on any curriculum that is com-

mercially published. In addition, multimedia based materials often require even

more support and cooperation from publishers, and there is far less financial sup-

port for innovative software materials, especially in proportion to what is required.

Therefore, there may be less freedom for developers to publish their own version

of their materials. These pressures often are exerted regardless of the research base

for the materials, resulting in software, originally designed to support in-depth
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problem solving and student evaluation of mathematical strategies and products,

to shift towards activities characterized by simpler problems and feedback.

Regarding research, there are constraints to publication. Many interesting

pieces of software have been created; however, the expertise developed during the

production of that software has not been disseminated. Whether this is because

resources are exhausted (finances, time, and emotional energy) or because there

is no interest, nonpublication has a strong deleterious effect on the field of

curricula development and research.

SUMMARY AND CONCLUSIONS

We believe that implementing a model of curriculum and software development

such as described here is essential to building a research base for curriculum and

software development as scientific enterprises, and for moving toward a time

when a solid research basis is demanded of all curricula that are used widely.

Presently in the United States, this is far from the case. In contrast, curriculum

and software design can and should have an explicit theoretical and empirical

foundation, beyond its genesis in someone’s intuitive grasp of children’s learning.

It also should interact with the ongoing development of theory and research—

reaching toward the ideal of testing a theory by testing the software and the

curriculum in which it is embedded.

Although mentioned briefly, it is easy to overlook the power of Building Blocks’

combined strategies. Research-based computer tools stand at the base, providing

computer analogs to critical mathematical ideas and processes. These are used,

or implemented, with activities and a management system that guides

children through research-based learning trajectories (developed over years

of synthesizing our own and others’ empirical work). These

activities-through-trajectories connect children’s informal knowledge to more

formal school mathematics. The result is a package that is motivating for children

but, unlike “edu-tainment,” results in significant assessed learning gains. In this

way, Building Blocks has substantial potential simultaneously to develop

pedagogically efficacious materials that will serve as tools of content and

pedagogical reform, to conduct formative and summative evaluations at multiple

levels, and to have a positive effect on the participating, low-income, school and

home settings. Such synthesis of curriculum/technology development as a

scientific enterprise and mathematics education research will reduce the

separation of research and practice in mathematics and technology education and

produce results that are immediately applicable by practitioners (parents, teachers,

and teacher educators), administrators and policy makers, and curriculum and

software developers.
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