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Electromagnetic waves
f=c/l
Frequency is measured in cycles per second, a unit we call Hertz or symbolize Hz.

As wavelength 
gets longer 
(bigger), cycles 
per second gets 
slower (frequency 
decreases).

Wavelength l

Amplitude



The electromagnetic spectrum



Binary orbits



Collapsed objects
• 0.6 < Mo <1.4 => white dwarf 
• 1.1 < Mo <3.3 => neutron star (pulsars)
• 3.8 < Mo <109 => black hole

Many stars end up in binary systems, and one or both of the stars can 
collapse once its internal fuel is burned up.







graphic courtesy of B. Barish, LIGO-Caltech
hula hoop courtesy of Craig and Arlene’s grandchildren
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Black Hole merger



Pulse timing is important



LIGO, late 1990s (first funding 1995)
Arms 4 km long, masses 40 kg, basically mirrors.  Motion detected 10–19 m (aLIGO).



Coincidence by aLIGO: Hanford, 
Washington and Livingston,  Louisiana, 

(Italy)



Gravity wave detectors

GEO600 was not operating on Sept. 15 2015 



What are gravitational waves



The sound chirp

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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The sound ends around middle C for those of you who know your piano.

Started about G, two and a half octaves lower.



Mass ranges
• We use the Sun’s mass as a unit for studying stars
• We designate it as Mo; we say the mass of our sun is 

Msun = 1 Mo

• Mdwarf < 1.39 Mo => white dwarf
• 1.39 Mo < Mns < 3.2 Mo => neutron star
• MBH > 3.2 Mo => black hole 

– stellar sized black holes
– The original stars lose blow off a lot of mass in their 

explosions
• Black hole at the center of our galaxy M = 106 Mo
• Supermassive Black holes 109 Mo

4/2/19 18



Coalescing black holes
17

Event m1/M� m2/M� M/M� �e↵ Mf/M� af Erad/(M�c2) `peak/(erg s�1) dL/Mpc z �⌦/deg2

GW150914 35.6+4.8
�3.0 30.6+3.0

�4.4 28.6+1.6
�1.5 �0.01+0.12

�0.13 63.1+3.3
�3.0 0.69+0.05

�0.04 3.1+0.4
�0.4 3.6+0.4

�0.4 ⇥ 1056 430+150
�170 0.09+0.03

�0.03 180

GW151012 23.3+14.0
�5.5 13.6+4.1

�4.8 15.2+2.0
�1.1 0.04+0.28

�0.19 35.7+9.9
�3.8 0.67+0.13

�0.11 1.5+0.5
�0.5 3.2+0.8

�1.7 ⇥ 1056 1060+540
�480 0.21+0.09

�0.09 1555

GW151226 13.7+8.8
�3.2 7.7+2.2

�2.6 8.9+0.3
�0.3 0.18+0.20

�0.12 20.5+6.4
�1.5 0.74+0.07

�0.05 1.0+0.1
�0.2 3.4+0.7

�1.7 ⇥ 1056 440+180
�190 0.09+0.04

�0.04 1033

GW170104 31.0+7.2
�5.6 20.1+4.9

�4.5 21.5+2.1
�1.7 �0.04+0.17

�0.20 49.1+5.2
�3.9 0.66+0.08

�0.10 2.2+0.5
�0.5 3.3+0.6

�0.9 ⇥ 1056 960+430
�410 0.19+0.07

�0.08 924

GW170608 10.9+5.3
�1.7 7.6+1.3

�2.1 7.9+0.2
�0.2 0.03+0.19

�0.07 17.8+3.2
�0.7 0.69+0.04

�0.04 0.9+0.05
�0.1 3.5+0.4

�1.3 ⇥ 1056 320+120
�110 0.07+0.02

�0.02 396

GW170729 50.6+16.6
�10.2 34.3+9.1

�10.1 35.7+6.5
�4.7 0.36+0.21

�0.25 80.3+14.6
�10.2 0.81+0.07

�0.13 4.8+1.7
�1.7 4.2+0.9

�1.5 ⇥ 1056 2750+1350
�1320 0.48+0.19

�0.20 1033

GW170809 35.2+8.3
�6.0 23.8+5.2

�5.1 25.0+2.1
�1.6 0.07+0.16

�0.16 56.4+5.2
�3.7 0.70+0.08

�0.09 2.7+0.6
�0.6 3.5+0.6

�0.9 ⇥ 1056 990+320
�380 0.20+0.05

�0.07 340

GW170814 30.7+5.7
�3.0 25.3+2.9

�4.1 24.2+1.4
�1.1 0.07+0.12

�0.11 53.4+3.2
�2.4 0.72+0.07

�0.05 2.7+0.4
�0.3 3.7+0.4

�0.5 ⇥ 1056 580+160
�210 0.12+0.03

�0.04 87

GW170817 1.46+0.12
�0.10 1.27+0.09

�0.09 1.186+0.001
�0.001 0.00+0.02

�0.01  2.8  0.89 � 0.04 � 0.1 ⇥ 1056 40+10
�10 0.01+0.00

�0.00 16

GW170818 35.5+7.5
�4.7 26.8+4.3

�5.2 26.7+2.1
�1.7 �0.09+0.18

�0.21 59.8+4.8
�3.8 0.67+0.07

�0.08 2.7+0.5
�0.5 3.4+0.5

�0.7 ⇥ 1056 1020+430
�360 0.20+0.07

�0.07 39

GW170823 39.6+10.0
�6.6 29.4+6.3

�7.1 29.3+4.2
�3.2 0.08+0.20

�0.22 65.6+9.4
�6.6 0.71+0.08

�0.10 3.3+0.9
�0.8 3.6+0.6

�0.9 ⇥ 1056 1850+840
�840 0.34+0.13

�0.14 1651

TABLE III. Selected source parameters of the eleven confident detections. We report median values with 90% credible intervals that include
statistical errors, and systematic errors from averaging the results of two waveform models for BBHs. For GW170817 credible intervals
and statistical errors are shown for IMRPhenomPv2NRT with low spin prior, while the sky area was computed from TaylorF2 samples. The
redshift for NGC 4993 from [92] and its associated uncertainties were used to calculate source frame masses for GW170817. For BBH events
the redshift was calculated from the luminosity distance and assumed cosmology as discussed in Appendix B. The columns show source frame
component masses mi and chirp massM, dimensionless e↵ective aligned spin �e↵ , final source frame mass Mf , final spin af , radiated energy
Erad, peak luminosity lpeak, luminosity distance dL, redshift z and sky localization �⌦. The sky localization is the area of the 90% credible
region. For GW170817 we give conservative bounds on parameters of the final remnant discussed in Sec. V E.

proved method for estimating the power spectral density of
the detector noise [53, 54] and frequency dependent calibra-
tion envelopes [96]; (ii) we use two waveform models that in-
corporate precession and combine their posteriors to mitigate
model uncertainties.

Key source parameters for the ten BBHs and one BNS
are shown in Table III. We quote the median and symmet-
ric 90% credible intervals for inferred quantities. For BBH
coalescences parameter uncertainties include statistical and
systematic errors from averaging posterior probability dis-
tributions over the two waveform models, as well as cal-
ibration uncertainty. Apart from GW170817, all posterior
distributions of GW events are consistent with originating
from BBHs. Posterior distributions for all GW events are
shown in Figs. 4, 5, 7, 6, and 8. Mass and tidal deforma-
bility posteriors for GW170817 are shown in Fig. 9. For
BBH coalescences we present combined posterior distribu-
tions from an e↵ective precessing spin waveform model (IM-
RPhenomPv2) [25, 26, 49] and a fully precessing model
(SEOBNRv3) [27, 28, 30]. For the analysis of GW170817 we
present results for three frequency-domain models IMRPhe-
nomPv2NRT [25, 26, 32, 49, 97], SEOBNRv4NRT [29, 32,
97, 98], TaylorF2 [35, 36, 38, 99–111] and two time-domain
models SEOBNRv4T [31] and TEOBResumS [33, 112]. De-
tails on Bayesian parameter estimation methods, prior choices
and waveform models used for BBH and BNS systems are
provided in Appendix B. The impact of prior choices on se-
lected results is discussed in Appendix C.

A. Source parameters

The GW signal emitted from a BBH coalescence depends
on intrinsic parameters that directly characterise the binary’s
dynamics and emitted waveform and extrinsic parameters that
encode the relation of the source to the detector network. In
general relativity an isolated BH is uniquely described by its
mass, spin and electric charge [113–117]. For astrophysical
BHs we assume the electric charge to be negligible. A BBH
undergoing quasi-circular inspiral can be described by eight
intrinsic parameters, the masses mi and spin vectors ~S i of its
component BHs defined at a reference frequency. Seven ad-
ditional extrinsic parameters are needed to describe a BH bi-
nary: the sky location (right ascension ↵ and declination �),
luminosity distance dL, the orbital inclination ◆ and polariza-
tion angle  , the time tc and phase �c at coalescence.

Since the maximum spin a Kerr BH of mass m can
reach is (Gm2)/c we define dimensionless spin vectors ~�i =

c~S i/(Gm2
i ) and spin magnitudes ai = c|~S i|/(Gm2

i ). If the spins
have a component in the orbital plane, then the binary’s orbital
angular momentum ~L and its spin vectors precess [118, 119]
around the total angular momentum ~J = ~L + ~S 1 + ~S 2.

We describe the dominant spin e↵ects by introducing ef-
fective parameters. The e↵ective aligned spin is defined as a
simple mass-weighted linear combination of the spins [23, 24,
120] projected onto the Newtonian angular momentum L̂N ,
which is normal to the orbital plane (L̂ = L̂N for aligned-spin
binaries)

�e↵ =
(m1~�1 + m2~�2) · L̂N

M
, (4)
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proved method for estimating the power spectral density of
the detector noise [53, 54] and frequency dependent calibra-
tion envelopes [96]; (ii) we use two waveform models that in-
corporate precession and combine their posteriors to mitigate
model uncertainties.

Key source parameters for the ten BBHs and one BNS
are shown in Table III. We quote the median and symmet-
ric 90% credible intervals for inferred quantities. For BBH
coalescences parameter uncertainties include statistical and
systematic errors from averaging posterior probability dis-
tributions over the two waveform models, as well as cal-
ibration uncertainty. Apart from GW170817, all posterior
distributions of GW events are consistent with originating
from BBHs. Posterior distributions for all GW events are
shown in Figs. 4, 5, 7, 6, and 8. Mass and tidal deforma-
bility posteriors for GW170817 are shown in Fig. 9. For
BBH coalescences we present combined posterior distribu-
tions from an e↵ective precessing spin waveform model (IM-
RPhenomPv2) [25, 26, 49] and a fully precessing model
(SEOBNRv3) [27, 28, 30]. For the analysis of GW170817 we
present results for three frequency-domain models IMRPhe-
nomPv2NRT [25, 26, 32, 49, 97], SEOBNRv4NRT [29, 32,
97, 98], TaylorF2 [35, 36, 38, 99–111] and two time-domain
models SEOBNRv4T [31] and TEOBResumS [33, 112]. De-
tails on Bayesian parameter estimation methods, prior choices
and waveform models used for BBH and BNS systems are
provided in Appendix B. The impact of prior choices on se-
lected results is discussed in Appendix C.

A. Source parameters

The GW signal emitted from a BBH coalescence depends
on intrinsic parameters that directly characterise the binary’s
dynamics and emitted waveform and extrinsic parameters that
encode the relation of the source to the detector network. In
general relativity an isolated BH is uniquely described by its
mass, spin and electric charge [113–117]. For astrophysical
BHs we assume the electric charge to be negligible. A BBH
undergoing quasi-circular inspiral can be described by eight
intrinsic parameters, the masses mi and spin vectors ~S i of its
component BHs defined at a reference frequency. Seven ad-
ditional extrinsic parameters are needed to describe a BH bi-
nary: the sky location (right ascension ↵ and declination �),
luminosity distance dL, the orbital inclination ◆ and polariza-
tion angle  , the time tc and phase �c at coalescence.

Since the maximum spin a Kerr BH of mass m can
reach is (Gm2)/c we define dimensionless spin vectors ~�i =

c~S i/(Gm2
i ) and spin magnitudes ai = c|~S i|/(Gm2

i ). If the spins
have a component in the orbital plane, then the binary’s orbital
angular momentum ~L and its spin vectors precess [118, 119]
around the total angular momentum ~J = ~L + ~S 1 + ~S 2.

We describe the dominant spin e↵ects by introducing ef-
fective parameters. The e↵ective aligned spin is defined as a
simple mass-weighted linear combination of the spins [23, 24,
120] projected onto the Newtonian angular momentum L̂N ,
which is normal to the orbital plane (L̂ = L̂N for aligned-spin
binaries)

�e↵ =
(m1~�1 + m2~�2) · L̂N

M
, (4)

3.26 x Mpc = Mly: all are in our local supercluster

Dist/Bly
1.4 B ly
3.4 B ly
1.43 B ly
3.1 B ly
1.0 B ly
9.0 B ly
3.2 B ly
1.9 Bly
0.13 B ly
3.3 B ly
6.0 B ly



The major players in LIGO

Kip Thorn, Caltech Rainer Weiss, MIT

Laser Interferometer Gravitational-Wave Observatory (LIGO) 
is a large-scale, very high-precision, physics experiment and 
observatory to detect gravitational waves. Sponsored by NSF.

Nobel Prize 2018



Arms are 4 km long

They want to detect h = DL/L=10-22

The laser travels 8 km, so L=8 x 103 m

DL = 10-22 x 8 x 103 m = 8 x 10-19 m

DL = 8 x 10-17 cm

Size of proton 1.6 x 10-13 cm



How big is 10-17 cm?

• So 10-17 cm is two thousandth of the size of a proton.  The motion 
detected was one tenth of a millionth of a billionth of a milliimeter. 

• If you compare this and put the number into dollars, with a 
millimeter being like a dollar, it is like having 2 thousand 
trillion dollars or something like 20 times the size of our 
national debt.

An amazing technical ‘tour de force’!!



Stop here



36 Mo and 29 Mo -> 62 Mo (+/-4 Mo)
distance 1.3 billion light years

Note: 36 Mo+ 29 Mo= 65 Mo
3 Moc2 energy in gravitational waves 

Sept 14, 2015 during the aLIGO calibration run



LISA-LIGO wave bands
1660 Hz

Weber
bar 10-16



For robustness and validation, we also use other generic
transient search algorithms [41]. A different search [73] and
a parameter estimation follow-up [74] detected GW150914
with consistent significance and signal parameters.

B. Binary coalescence search

This search targets gravitational-wave emission from
binary systems with individual masses from 1 to 99M⊙,
total mass less than 100M⊙, and dimensionless spins up to
0.99 [44]. To model systems with total mass larger than
4M⊙, we use the effective-one-body formalism [75], which
combines results from the post-Newtonian approach
[11,76] with results from black hole perturbation theory
and numerical relativity. The waveform model [77,78]
assumes that the spins of the merging objects are aligned
with the orbital angular momentum, but the resulting
templates can, nonetheless, effectively recover systems
with misaligned spins in the parameter region of
GW150914 [44]. Approximately 250 000 template wave-
forms are used to cover this parameter space.
The search calculates the matched-filter signal-to-noise

ratio ρðtÞ for each template in each detector and identifies
maxima of ρðtÞwith respect to the time of arrival of the signal
[79–81]. For each maximum we calculate a chi-squared
statistic χ2r to test whether the data in several different
frequency bands are consistent with the matching template
[82]. Values of χ2r near unity indicate that the signal is
consistent with a coalescence. If χ2r is greater than unity, ρðtÞ
is reweighted as ρ̂ ¼ ρ=f½1þ ðχ2rÞ3&=2g1=6 [83,84]. The final
step enforces coincidence between detectors by selecting
event pairs that occur within a 15-ms window and come from
the same template. The 15-ms window is determined by the
10-ms intersite propagation time plus 5 ms for uncertainty in
arrival time of weak signals. We rank coincident events based
on the quadrature sum ρ̂c of the ρ̂ from both detectors [45].
To produce background data for this search the SNR

maxima of one detector are time shifted and a new set of
coincident events is computed. Repeating this procedure
∼107 times produces a noise background analysis time
equivalent to 608 000 years.
To account for the search background noise varying across

the target signal space, candidate and background events are
divided into three search classes based on template length.
The right panel of Fig. 4 shows the background for the
search class of GW150914. The GW150914 detection-
statistic value of ρ̂c ¼ 23.6 is larger than any background
event, so only an upper bound can be placed on its false
alarm rate. Across the three search classes this bound is 1 in
203 000 years. This translates to a false alarm probability
< 2 × 10−7, corresponding to 5.1σ.
A second, independent matched-filter analysis that uses a

different method for estimating the significance of its
events [85,86], also detected GW150914 with identical
signal parameters and consistent significance.

When an event is confidently identified as a real
gravitational-wave signal, as for GW150914, the back-
ground used to determine the significance of other events is
reestimated without the contribution of this event. This is
the background distribution shown as a purple line in the
right panel of Fig. 4. Based on this, the second most
significant event has a false alarm rate of 1 per 2.3 years and
corresponding Poissonian false alarm probability of 0.02.
Waveform analysis of this event indicates that if it is
astrophysical in origin it is also a binary black hole
merger [44].

VI. SOURCE DISCUSSION

The matched-filter search is optimized for detecting
signals, but it provides only approximate estimates of
the source parameters. To refine them we use general
relativity-based models [77,78,87,88], some of which
include spin precession, and for each model perform a
coherent Bayesian analysis to derive posterior distributions
of the source parameters [89]. The initial and final masses,
final spin, distance, and redshift of the source are shown in
Table I. The spin of the primary black hole is constrained
to be < 0.7 (90% credible interval) indicating it is not
maximally spinning, while the spin of the secondary is only
weakly constrained. These source parameters are discussed
in detail in [39]. The parameter uncertainties include
statistical errors and systematic errors from averaging the
results of different waveform models.
Using the fits to numerical simulations of binary black

hole mergers in [92,93], we provide estimates of the mass
and spin of the final black hole, the total energy radiated
in gravitational waves, and the peak gravitational-wave
luminosity [39]. The estimated total energy radiated in
gravitational waves is 3.0þ0.5

−0.5M⊙c2. The system reached a
peak gravitational-wave luminosity of 3.6þ0.5

−0.4 × 1056 erg=s,
equivalent to 200þ30

−20M⊙c2=s.
Several analyses have been performed to determine

whether or not GW150914 is consistent with a binary
black hole system in general relativity [94]. A first

TABLE I. Source parameters for GW150914. We report
median values with 90% credible intervals that include statistical
errors, and systematic errors from averaging the results of
different waveform models. Masses are given in the source
frame; to convert to the detector frame multiply by (1þ z)
[90]. The source redshift assumes standard cosmology [91].

Primary black hole mass 36þ5
−4M⊙

Secondary black hole mass 29þ4
−4M⊙

Final black hole mass 62þ4
−4M⊙

Final black hole spin 0.67þ0.05
−0.07

Luminosity distance 410þ160
−180 Mpc

Source redshift z 0.09þ0.03
−0.04
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Observation of Gravitational Waves from a Binary Black Hole Merger
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On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.1σ. The source lies at a luminosity distance of 410þ160

−180 Mpc corresponding to a redshift z ¼ 0.09þ0.03
−0.04 .

In the source frame, the initial black hole masses are 36þ5
−4M⊙ and 29þ4

−4M⊙, and the final black hole mass is
62þ4

−4M⊙, with 3.0þ0.5
−0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals.

These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

I. INTRODUCTION

In 1916, the year after the final formulation of the field
equations of general relativity, Albert Einstein predicted
the existence of gravitational waves. He found that
the linearized weak-field equations had wave solutions:
transverse waves of spatial strain that travel at the speed of
light, generated by time variations of the mass quadrupole
moment of the source [1,2]. Einstein understood that
gravitational-wave amplitudes would be remarkably
small; moreover, until the Chapel Hill conference in
1957 there was significant debate about the physical
reality of gravitational waves [3].
Also in 1916, Schwarzschild published a solution for the

field equations [4] that was later understood to describe a
black hole [5,6], and in 1963 Kerr generalized the solution
to rotating black holes [7]. Starting in the 1970s theoretical
work led to the understanding of black hole quasinormal
modes [8–10], and in the 1990s higher-order post-
Newtonian calculations [11] preceded extensive analytical
studies of relativistic two-body dynamics [12,13]. These
advances, together with numerical relativity breakthroughs
in the past decade [14–16], have enabled modeling of
binary black hole mergers and accurate predictions of
their gravitational waveforms. While numerous black hole
candidates have now been identified through electromag-
netic observations [17–19], black hole mergers have not
previously been observed.

The discovery of the binary pulsar systemPSR B1913þ16
by Hulse and Taylor [20] and subsequent observations of
its energy loss by Taylor and Weisberg [21] demonstrated
the existence of gravitational waves. This discovery,
along with emerging astrophysical understanding [22],
led to the recognition that direct observations of the
amplitude and phase of gravitational waves would enable
studies of additional relativistic systems and provide new
tests of general relativity, especially in the dynamic
strong-field regime.
Experiments to detect gravitational waves began with

Weber and his resonant mass detectors in the 1960s [23],
followed by an international network of cryogenic reso-
nant detectors [24]. Interferometric detectors were first
suggested in the early 1960s [25] and the 1970s [26]. A
study of the noise and performance of such detectors [27],
and further concepts to improve them [28], led to
proposals for long-baseline broadband laser interferome-
ters with the potential for significantly increased sensi-
tivity [29–32]. By the early 2000s, a set of initial detectors
was completed, including TAMA 300 in Japan, GEO 600
in Germany, the Laser Interferometer Gravitational-Wave
Observatory (LIGO) in the United States, and Virgo in
Italy. Combinations of these detectors made joint obser-
vations from 2002 through 2011, setting upper limits on a
variety of gravitational-wave sources while evolving into
a global network. In 2015, Advanced LIGO became the
first of a significantly more sensitive network of advanced
detectors to begin observations [33–36].
A century after the fundamental predictions of Einstein

and Schwarzschild, we report the first direct detection of
gravitational waves and the first direct observation of a
binary black hole system merging to form a single black
hole. Our observations provide unique access to the
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Conclusions
• Observations demonstrate that 

gravitational waves travel at the speed of 
light and that gravity has no mass, as 
predicted by Einstein’s general relativity.

• We can now estimate the rate at which 
Black hole coalescences are taking place in 
the nearby (100 M ly).



Coalescing black hole 
simulations

https://www.youtube.com/watch?v=L478ZPy_2Ys

https://www.youtube.com/watch?v=L478ZPy_2Ys


Coalescing black hole simulations

https://www.youtube.com/watch?v=tY3xCamzMZk
Geoffrey Lovelace, Michael Boyle, Mark A. Scheel, and 
Bela Szilagyi, Class. Quantum Grav. 29, 045003 (2012)

https://www.youtube.com/watch?v=tY3xCamzMZk


GW170817
Discovered by LIGO and Virgo Observatories

Chirp 100 sec by LIGP

1.7 s later by Fermi and INTEGRAL – gamma-rays

11 hours later  optical counterpart

Observed from radio to X-rays -> kilonova

another similar event found without GW counterpart

Swift, Chandra and 70 other observatories

Jet outflows probably not directed towards Earth

Region now neutron rich 

Paper with 4000 authors (2/3 of world’s astronomers)

Distance 40 Mpc

2 kpc from center of NGC4993 in constellation Hydra

Binary neutron star system

Gravitational waves when they coalesced

M1 in the range 1.36-2.26 Mo

M2 in the range 0.86-1.36 Mo

Such events 

produce the 

elements heavier 

than iron – called 

r-process nuclei



• Strongest sources have large masses moving with  v ~ c

Amplitudes of Gravitational Wave Sources . . .

Characteristic GW amplitude h

Estimated upper limits (circa 2003):
•10 Mo Black Hole at

• r = 50,000 light-years, h ~ 10-16

• r = 50 million light-years, h ~ 10-19

• r = 650 million light-years, h ~ 10-20

• r = 10 billion light-years, h ~ 10-21

•2.5 x 106 Mo Massive Black Hole at
• r = 10 billion light-years, h ~ 10-16


