

Lecture 5: Population and affluence

Climate Redux:

March 5, 2021
Jonathan F. Ormes
JFOrmes@gmail.com

What I'm going to discuss today

- Population history and projections
- Why 11 billion is baked in
- Arable land
- Vertical farming
- Affluence

Background

- Population and affluence are drivers on energy use
- Population growth rate is declining (ZPG by 2100??)
- Per capita energy use is growing (developing countries)
- Energy use => fossil fuels => global warming
- Carrying capacity of Earth
- How many people can we feed
- Land and water as resources
- Human impact on biosphere

- "It's hard to make predictions, especially about the future."

Lawrence Peter "Yogi" Berra

How long will it take for my investment to double? Use Rule of 70
$\frac{70}{\text { Annual interest rate }}$
= \# years for investment to double
Annual interest rate

Works for population growth, too.
70
$=70$ years for population to double
1% Annual growth rate

20th Century growth rate was "super exponential" until inflection point circa 1980

Human species
0.5 billion: 1600

1 billion: 1802202 years
2 billion: 1928126 years
4 billion: 197446 years
8 billion: 203056 years
16 billion: 210070 years

A different data set

http://www.indexmundi.com/g/g.aspx?c=xx\&v=24

This plot doesn't even have ZPG on it.
If we keep going at $1.1 \% /$ year, by 2100 there will be > 25B souls on the planet!

Population density

$\begin{array}{r}2-10 \\ \square \\ \hline\end{array}$

- $41-100$
$=\begin{gathered}101-500 \\ =500\end{gathered}$

```
Miller Pnjuction
```


Population growth rate

Scale: children per mother

$20^{\text {th }}$ century growth was superexponential

Consequences:
There were lots of young people and fewer old people.
And it will take a generation to stabilize even at no increase in growth rate.

Age >60	1B		Approximate age distribution now
Age 45-60	1B		Approximately $\mathbf{8 ~ B}$ souls; each box represents 1 B people
Age 30-45	1B	1B	
Age 15-30	1B	1B	Credit for this demonstration goes to Hans Rosling, a Prof. of International Health at Karolinska Institute of Sweden.
Age 0-15	1B	1B	

Age > 60	1B		15 years hence we die
Age 45-60	1B		
Age 30-45	1B	1B	
Age 15-30	1B	1B	Credit for this demonstration goes to Hans Rosling, a Prof. of Internationa Health at Karolinska Institute of Sweden.
Age 0-15	1B	1B	

Age >60	1B		15 years hence we have died
Age 45-60	1B	1B	Everyone gets 15 years older And 2B babies have been born
Age 30-45	1B	1B	
Age 15-30	1B	1B	9 Billion
Age 0-15	1B	1B	

Age 0-15

Age > 60	1B	1B	And 30 years later, the year is 2050
Age 45-60	1B	1B	and the population is 10 B
Age 30-45	1B	1B	
Age 15-30	1B	1B	
Age 0-15	1B	1B	This assumes 2 babies per woman worldwide.

One more box is added because life expectancy is slowly increasing.

Population's future

- We will reach ~ 11 billion unless some catastrophe occurs
- Empower women to bring the poorest 2 B out of poverty, else growth will continue
- Assuming this happens, the age distribution will become more uniform and potentially stable
- Main issue is the carrying capacity of the Earth: How many can we water and feed?

Babies per woman decrease when

- Children survive
- Children not needed for work
- Women get education and join the workforce
- Family planning is accessible

Empower women

Summary

The high fertility curve won't happen because the planet cannot support that many people.

Mother Nature will limit population

- How she does it might not be pretty

People require food: requires water and arable land

How many people can the planet support: aka "carrying capacity"

- Depends on lifestyle
- Estimates vary from 2 to 40 billion
- 2B if everyone on Earth lived like a middleclass American, consuming roughly 3.3 times the subsistence level of food and about 250 times the subsistence level of clean water
- 40 B if everyone on the planet consumed only what he or she needed
- Can technology save us from Malthus?

Per capita arable land

Arable land is a finite resource

Global scale problem predicted within 70 years
UN Intergovernmental Technical Panel on Soils (ITPS like IPCC)

Threats

Nutrient depletion
Salinization
Erosion
Urbanization
Chemical pollution

Vertical farming

Hydroponics: nutrients in water, no soil
Aquaponics: fish and plants in a closed system
Aeroponics: NASA inspired; grow in special nutrients

Need light, water and nutrients Energy intensive (nuclear??)
Need water and maybe a CO_{2} source

Daily per capita consumption of energy (footiprint)

	Primitive society	Hunting society	Primitive agriculture	Advanced agriculture	Industrial society	Technological society
Food	2	2	4	6	7	10
Home and commerce		3	4	12	32	66
Agriculture and industry			4	7	24	91
Transportation				1	14	63
Total	$\mathbf{2}$	$\mathbf{5}$	12	26	77	230

Units: kWhr per person per day = 3.6 M-Joules/person/day
230 kWhr/person/day was in 2005; now about 270 kWhr/person/day

Energy consumption vs. GDP

Energy consumption

Recent bump due to lifestyle changes in Asia.

Efficiency has helped somewhat

World Per Capita Energy Consumption and CO2

Affluence

- Per capita consumption of goods and services
- Represented by GDP per capita
- Equivalently energy consumption per capita

The good life! Cars, travel, restaurant food, fresh fruit from far, far away,

Biocapacity of the earth $=\mathbf{1 1 . 2}$ gha $=$ Maximum per capita footprint \times size of sustainable population

Available:
1.64 gha/cap

Use
Ave: 2.23 gha/cap USA: 9.4 gha/cap EU: 4.8 gha/cap China: 1.6 gha/cap
gha/cap = global hectares per capita: Global total 11.2 gha http://www.optimumpopulation.org/opt.optimum.html
(1 hectare $=0.405$ acres)

Sustainable Population Hyperbola

Biocapacity of the planet gha/cap: Global hectares per capita.

For acres/person, multiply by 2.47

The location of the hyperbola is debated.

Inequality of Consumption, 2005

Share of World's private consumption (\%)

Summary

- Water and land determine the carrying capacity
- We are arguably using more resources than the planet can provide
- Must "borrow" from the Earth to support additional people temporarily (how long??)
- finite resources provide limit
- More for us, less for other species

What I discussed today

- Population history and projections
- Why 11 billion is "baked in"
- Arable land
- Vertical farming
- Affluence
- Whose problem is this?

The existential question: can all of humanity afford to live the lifestyle of a technological society and is it morally right to ask that they don't.

What can an individual do?

- Vote climate
- Reduce your own carbon footprint
- Drive and fly less
- Eat low on the food chain (e.g. minimize cattle and hogs)
- Buy local
- Solar energy and home insulation
- Help plant trees (A billion needed globally)
- Support environmental organizations
- Nature Conservancy
- Sierra Club
- Environmental Defense Fund
- Citizen's Climate Lobby
- Bi-partisan for Carbon "Fee and Dividend"

The end

